Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894501259> ?p ?o ?g. }
- W2894501259 abstract "Abstract We examined the pH/ T duality of acidic pH and temperature ( T ) for the growth of grass shoots in order to determine the phenomenological equation of wall properties (‘equation of state’, EoS) for living plants. By considering non-meristematic growth as a dynamic series of ‘state transitions’ (STs) in the extending primary wall, we identified the ‘critical exponents’ (read: optimum) for this phenomenon, which exhibit a singular behaviour at a critical temperature, critical pH and critical chemical potential (μ) in the form of four power laws: F π ( τ )∝| τ | β −1 , F τ ( τ )∝| π | 1−α , G μ ( τ )∝| τ | −2− α +2 β and G τ ( μ )∝| μ | 2− α . The power-law exponents α and β are numbers that are independent of pH (or μ) and T, which are known as critical exponents, while π and τ represent a reduced pH and reduced temperature, respectively. Various scaling predictions were obtained – the convexity relation α + β ≥ 2 for practical pH-based analysis and a β ≡ 2 identity in a ‘microscopic’ representation. In the presented scenario, the magnitude that is decisive is the chemical potential of the H + ions (protons), which force subsequent STs and growth. Furthermore, we observed that the growth rate is generally proportional to the product of the Euler beta functions of T and pH, which are used to determine the hidden content of the Lockhart constant Ф. It turned out that the evolution equation, when expressed in terms of the same dynamic set of variables, explains either the monotonic growth or periodic extension that is usually observed – like the one detected in pollen tubes – in a unified account. We suggest that cell growth evolves along the path with the least activity, thereby optimising growth under any physiological conditions. The pH dynamics in close-to-natural conditions appears to essentially be responsible for this extreme trajectory, thereby providing a highly nonlinear pH( t ), transformation. Moreover, the drops in pH that are induced by auxin or fusicoccin, when next converted by the augmented Lockhart equation, are enough to explain a significant fraction of the increase in the growth rate. A self-consistent recurring model is proposed to embrace the inherent complexity of such a biological system, in which several intricate pathways work simultaneously, in order to reconcile the conflicting views of plant cell extension and growth. Eventually, we pose the question: Is the chemical potential of protons a master regulator for tip-growing cells? Author summary In plant development, sudden changes such as cell expansion or pollen tube oscillations seem to depend on a correlative group of events rather than on slow shifts in the apex. Hence, in order to understand or to control the processes in the extending cell wall, we need to unravel the general principles and constraints that govern growth. The quest for these principles has primarily focused on the molecular, though merely descriptive, level. Here, we show that it is possible to analyse oscillatory state changes computationally without even requiring knowledge about the exact type of transition. Our results suggest that the cell wall properties and growth of plant cells can be accurately and efficiently predicted by a set of physical and chemical variables such as temperature, pressure and the dynamic pH of the growing plant, which build a scaffold for more specific biochemical predictions. In this context, we observed that cell growth evolves along the path the least action, thereby optimising growth under any physiological conditions. The model equations that we propose span the fields of the biological, physical, chemical and Earth sciences. The common denominator that ties the growth factors together is the chemical potential of protons, which is possibly a central core-controlling mechanism that is able to produce a macroscopic outcome, i.e. structurally and temporally organised apical growth." @default.
- W2894501259 created "2018-10-05" @default.
- W2894501259 creator A5085155291 @default.
- W2894501259 date "2018-10-01" @default.
- W2894501259 modified "2023-09-23" @default.
- W2894501259 title "How to obtain cell volume from dynamic pH, temperature and pressure in plants" @default.
- W2894501259 cites W1499656673 @default.
- W2894501259 cites W1648415465 @default.
- W2894501259 cites W1768711802 @default.
- W2894501259 cites W1963492500 @default.
- W2894501259 cites W1965284439 @default.
- W2894501259 cites W1967324863 @default.
- W2894501259 cites W1968850763 @default.
- W2894501259 cites W1969130160 @default.
- W2894501259 cites W1974631465 @default.
- W2894501259 cites W1975238158 @default.
- W2894501259 cites W1975456623 @default.
- W2894501259 cites W1977487125 @default.
- W2894501259 cites W1978360105 @default.
- W2894501259 cites W1979302212 @default.
- W2894501259 cites W1980784960 @default.
- W2894501259 cites W1982579250 @default.
- W2894501259 cites W1986302825 @default.
- W2894501259 cites W1989358436 @default.
- W2894501259 cites W1990740389 @default.
- W2894501259 cites W1994280212 @default.
- W2894501259 cites W1995877223 @default.
- W2894501259 cites W1999268253 @default.
- W2894501259 cites W2001396309 @default.
- W2894501259 cites W2005694028 @default.
- W2894501259 cites W2008879046 @default.
- W2894501259 cites W2015394295 @default.
- W2894501259 cites W2016940213 @default.
- W2894501259 cites W2021794957 @default.
- W2894501259 cites W2025935782 @default.
- W2894501259 cites W2025943886 @default.
- W2894501259 cites W2026186095 @default.
- W2894501259 cites W2030020375 @default.
- W2894501259 cites W2032469136 @default.
- W2894501259 cites W2035018334 @default.
- W2894501259 cites W2036312682 @default.
- W2894501259 cites W2038647510 @default.
- W2894501259 cites W2043664618 @default.
- W2894501259 cites W2044201561 @default.
- W2894501259 cites W2045487505 @default.
- W2894501259 cites W2046440141 @default.
- W2894501259 cites W2048768240 @default.
- W2894501259 cites W2051689620 @default.
- W2894501259 cites W2051977872 @default.
- W2894501259 cites W2054010794 @default.
- W2894501259 cites W2054848637 @default.
- W2894501259 cites W2055362144 @default.
- W2894501259 cites W2055647956 @default.
- W2894501259 cites W2059384453 @default.
- W2894501259 cites W2063146645 @default.
- W2894501259 cites W2064576495 @default.
- W2894501259 cites W2065693451 @default.
- W2894501259 cites W2065832300 @default.
- W2894501259 cites W2068412323 @default.
- W2894501259 cites W2071513646 @default.
- W2894501259 cites W2072692534 @default.
- W2894501259 cites W2075413506 @default.
- W2894501259 cites W2077732556 @default.
- W2894501259 cites W2091717318 @default.
- W2894501259 cites W2097398924 @default.
- W2894501259 cites W2098700567 @default.
- W2894501259 cites W2099091088 @default.
- W2894501259 cites W2103457014 @default.
- W2894501259 cites W2104214495 @default.
- W2894501259 cites W2108461065 @default.
- W2894501259 cites W2108970459 @default.
- W2894501259 cites W2109468334 @default.
- W2894501259 cites W2112422190 @default.
- W2894501259 cites W2115413798 @default.
- W2894501259 cites W2116089078 @default.
- W2894501259 cites W2116697546 @default.
- W2894501259 cites W2116909049 @default.
- W2894501259 cites W2117164402 @default.
- W2894501259 cites W2117848899 @default.
- W2894501259 cites W2120543173 @default.
- W2894501259 cites W2122249824 @default.
- W2894501259 cites W2124102421 @default.
- W2894501259 cites W2131104877 @default.
- W2894501259 cites W2139196357 @default.
- W2894501259 cites W2144058871 @default.
- W2894501259 cites W2144681393 @default.
- W2894501259 cites W2145522754 @default.
- W2894501259 cites W2145587425 @default.
- W2894501259 cites W2146061884 @default.
- W2894501259 cites W2155765255 @default.
- W2894501259 cites W2156919989 @default.
- W2894501259 cites W2158282521 @default.
- W2894501259 cites W2158786297 @default.
- W2894501259 cites W2162712339 @default.
- W2894501259 cites W2165532514 @default.
- W2894501259 cites W2166314922 @default.
- W2894501259 cites W2166357525 @default.
- W2894501259 cites W2168947509 @default.
- W2894501259 cites W2169394837 @default.
- W2894501259 cites W2170524248 @default.