Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894511130> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2894511130 endingPage "114" @default.
- W2894511130 startingPage "106" @default.
- W2894511130 abstract "Glioblastoma Multiforme is a high grade, very aggressive, brain tumor, with patients having a poor prognosis. Lower grade gliomas are less aggressive, but they can evolve into higher grade tumors over time. Patient management and treatment can vary considerably with tumor grade, ranging from tumor resection followed by a combined radio- and chemotherapy to a “wait and see” approach. Hence, tumor grading is important for adequate treatment planning and monitoring. The gold standard for tumor grading relies on histopathological diagnosis of biopsy specimens. However, this procedure is invasive, time consuming, and prone to sampling error. Given these disadvantages, automatic tumor grading from widely used MRI protocols would be clinically important, as a way to expedite treatment planning and assessment of tumor evolution. In this paper, we propose to use Convolutional Neural Networks for predicting tumor grade directly from imaging data. In this way, we overcome the need for expert annotations of regions of interest. We evaluate two prediction approaches: from the whole brain, and from an automatically defined tumor region. Finally, we employ interpretability methodologies as a quality assurance stage to check if the method is using image regions indicative of tumor grade for classification." @default.
- W2894511130 created "2018-10-05" @default.
- W2894511130 creator A5016100261 @default.
- W2894511130 creator A5034007830 @default.
- W2894511130 creator A5054804413 @default.
- W2894511130 creator A5060822066 @default.
- W2894511130 creator A5063057337 @default.
- W2894511130 date "2018-01-01" @default.
- W2894511130 modified "2023-10-18" @default.
- W2894511130 title "Automatic Brain Tumor Grading from MRI Data Using Convolutional Neural Networks and Quality Assessment" @default.
- W2894511130 cites W1641498739 @default.
- W2894511130 cites W1901129140 @default.
- W2894511130 cites W1936750108 @default.
- W2894511130 cites W2116531017 @default.
- W2894511130 cites W2117340355 @default.
- W2894511130 cites W2302255633 @default.
- W2894511130 cites W2344203112 @default.
- W2894511130 cites W2751069891 @default.
- W2894511130 cites W2776220900 @default.
- W2894511130 cites W2779494124 @default.
- W2894511130 cites W2805614886 @default.
- W2894511130 cites W2885452842 @default.
- W2894511130 cites W2962858109 @default.
- W2894511130 cites W4244244128 @default.
- W2894511130 cites W4376595503 @default.
- W2894511130 doi "https://doi.org/10.1007/978-3-030-02628-8_12" @default.
- W2894511130 hasPublicationYear "2018" @default.
- W2894511130 type Work @default.
- W2894511130 sameAs 2894511130 @default.
- W2894511130 citedByCount "57" @default.
- W2894511130 countsByYear W28945111302019 @default.
- W2894511130 countsByYear W28945111302020 @default.
- W2894511130 countsByYear W28945111302021 @default.
- W2894511130 countsByYear W28945111302022 @default.
- W2894511130 countsByYear W28945111302023 @default.
- W2894511130 crossrefType "book-chapter" @default.
- W2894511130 hasAuthorship W2894511130A5016100261 @default.
- W2894511130 hasAuthorship W2894511130A5034007830 @default.
- W2894511130 hasAuthorship W2894511130A5054804413 @default.
- W2894511130 hasAuthorship W2894511130A5060822066 @default.
- W2894511130 hasAuthorship W2894511130A5063057337 @default.
- W2894511130 hasBestOaLocation W28945111302 @default.
- W2894511130 hasConcept C106436119 @default.
- W2894511130 hasConcept C119857082 @default.
- W2894511130 hasConcept C127413603 @default.
- W2894511130 hasConcept C142724271 @default.
- W2894511130 hasConcept C147176958 @default.
- W2894511130 hasConcept C154945302 @default.
- W2894511130 hasConcept C2777286243 @default.
- W2894511130 hasConcept C2778618615 @default.
- W2894511130 hasConcept C2779130545 @default.
- W2894511130 hasConcept C2781067378 @default.
- W2894511130 hasConcept C41008148 @default.
- W2894511130 hasConcept C71924100 @default.
- W2894511130 hasConcept C81363708 @default.
- W2894511130 hasConceptScore W2894511130C106436119 @default.
- W2894511130 hasConceptScore W2894511130C119857082 @default.
- W2894511130 hasConceptScore W2894511130C127413603 @default.
- W2894511130 hasConceptScore W2894511130C142724271 @default.
- W2894511130 hasConceptScore W2894511130C147176958 @default.
- W2894511130 hasConceptScore W2894511130C154945302 @default.
- W2894511130 hasConceptScore W2894511130C2777286243 @default.
- W2894511130 hasConceptScore W2894511130C2778618615 @default.
- W2894511130 hasConceptScore W2894511130C2779130545 @default.
- W2894511130 hasConceptScore W2894511130C2781067378 @default.
- W2894511130 hasConceptScore W2894511130C41008148 @default.
- W2894511130 hasConceptScore W2894511130C71924100 @default.
- W2894511130 hasConceptScore W2894511130C81363708 @default.
- W2894511130 hasLocation W28945111301 @default.
- W2894511130 hasLocation W28945111302 @default.
- W2894511130 hasOpenAccess W2894511130 @default.
- W2894511130 hasPrimaryLocation W28945111301 @default.
- W2894511130 hasRelatedWork W3006943036 @default.
- W2894511130 hasRelatedWork W3027997911 @default.
- W2894511130 hasRelatedWork W4200511449 @default.
- W2894511130 hasRelatedWork W4206534706 @default.
- W2894511130 hasRelatedWork W4229079080 @default.
- W2894511130 hasRelatedWork W4287776258 @default.
- W2894511130 hasRelatedWork W4310880831 @default.
- W2894511130 hasRelatedWork W4385957992 @default.
- W2894511130 hasRelatedWork W4385965371 @default.
- W2894511130 hasRelatedWork W4386025632 @default.
- W2894511130 isParatext "false" @default.
- W2894511130 isRetracted "false" @default.
- W2894511130 magId "2894511130" @default.
- W2894511130 workType "book-chapter" @default.