Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894524622> ?p ?o ?g. }
- W2894524622 endingPage "386" @default.
- W2894524622 startingPage "386" @default.
- W2894524622 abstract "Knowledge discovery about people and cities from emerging location data has been an active research field but is still relatively unexplored. In recent years, a considerable amount of work has been developed around the use of social media data, most of which focusses on mining the content, with comparatively less attention given to the location information. Furthermore, what aggregated scale spatial patterns show still needs extensive discussion. This paper proposes a tweet-topic-function-structure framework to reveal spatial patterns from individual tweets at aggregated spatial levels, combining an unsupervised learning algorithm with spatial measures. Two-year geo-tweets collected in Greater London were analyzed as a demonstrator of the framework and as a case study. The results indicate, at a disaggregated level, that the distribution of topics possess a fair degree of spatial randomness related to tweeting behavior. When aggregating tweets by zones, the areas with the same topics form spatial clusters but of entangled urban functions. Furthermore, hierarchical clustering generates a clear spatial structure with orders of centers. Our work demonstrates that although uncertainties exist, geo-tweets should still be a useful resource for informing spatial planning, especially for the strategic planning of economic clusters." @default.
- W2894524622 created "2018-10-05" @default.
- W2894524622 creator A5015418685 @default.
- W2894524622 creator A5022293237 @default.
- W2894524622 creator A5063652311 @default.
- W2894524622 creator A5066336530 @default.
- W2894524622 date "2018-09-25" @default.
- W2894524622 modified "2023-10-16" @default.
- W2894524622 title "Profiling the Spatial Structure of London: From Individual Tweets to Aggregated Functional Zones" @default.
- W2894524622 cites W1776191302 @default.
- W2894524622 cites W1804959266 @default.
- W2894524622 cites W1987228002 @default.
- W2894524622 cites W1988680150 @default.
- W2894524622 cites W1990776069 @default.
- W2894524622 cites W2017053662 @default.
- W2894524622 cites W2019972946 @default.
- W2894524622 cites W2042420536 @default.
- W2894524622 cites W2052611179 @default.
- W2894524622 cites W2061308627 @default.
- W2894524622 cites W2064489681 @default.
- W2894524622 cites W2066473934 @default.
- W2894524622 cites W2092849947 @default.
- W2894524622 cites W2094083682 @default.
- W2894524622 cites W2099610463 @default.
- W2894524622 cites W2118898434 @default.
- W2894524622 cites W2151519001 @default.
- W2894524622 cites W2154056116 @default.
- W2894524622 cites W2164631912 @default.
- W2894524622 cites W2166792446 @default.
- W2894524622 cites W2180940404 @default.
- W2894524622 cites W2196332753 @default.
- W2894524622 cites W2199399284 @default.
- W2894524622 cites W2273232783 @default.
- W2894524622 cites W2290531422 @default.
- W2894524622 cites W2336759105 @default.
- W2894524622 cites W2342271261 @default.
- W2894524622 cites W2529101452 @default.
- W2894524622 cites W2531293538 @default.
- W2894524622 cites W2551071090 @default.
- W2894524622 cites W2585187023 @default.
- W2894524622 cites W2587851865 @default.
- W2894524622 cites W2593005917 @default.
- W2894524622 cites W2742719522 @default.
- W2894524622 cites W2744807500 @default.
- W2894524622 cites W2752633749 @default.
- W2894524622 cites W2763119774 @default.
- W2894524622 cites W2766254866 @default.
- W2894524622 cites W2792776725 @default.
- W2894524622 cites W2795724839 @default.
- W2894524622 cites W2810648485 @default.
- W2894524622 cites W2905216006 @default.
- W2894524622 cites W3104325905 @default.
- W2894524622 doi "https://doi.org/10.3390/ijgi7100386" @default.
- W2894524622 hasPublicationYear "2018" @default.
- W2894524622 type Work @default.
- W2894524622 sameAs 2894524622 @default.
- W2894524622 citedByCount "9" @default.
- W2894524622 countsByYear W28945246222019 @default.
- W2894524622 countsByYear W28945246222020 @default.
- W2894524622 countsByYear W28945246222021 @default.
- W2894524622 countsByYear W28945246222022 @default.
- W2894524622 countsByYear W28945246222023 @default.
- W2894524622 crossrefType "journal-article" @default.
- W2894524622 hasAuthorship W2894524622A5015418685 @default.
- W2894524622 hasAuthorship W2894524622A5022293237 @default.
- W2894524622 hasAuthorship W2894524622A5063652311 @default.
- W2894524622 hasAuthorship W2894524622A5066336530 @default.
- W2894524622 hasBestOaLocation W28945246221 @default.
- W2894524622 hasConcept C111919701 @default.
- W2894524622 hasConcept C124101348 @default.
- W2894524622 hasConcept C136764020 @default.
- W2894524622 hasConcept C154945302 @default.
- W2894524622 hasConcept C158709400 @default.
- W2894524622 hasConcept C159620131 @default.
- W2894524622 hasConcept C187191949 @default.
- W2894524622 hasConcept C18903297 @default.
- W2894524622 hasConcept C202444582 @default.
- W2894524622 hasConcept C205649164 @default.
- W2894524622 hasConcept C206345919 @default.
- W2894524622 hasConcept C23123220 @default.
- W2894524622 hasConcept C2522767166 @default.
- W2894524622 hasConcept C2778755073 @default.
- W2894524622 hasConcept C31258907 @default.
- W2894524622 hasConcept C33923547 @default.
- W2894524622 hasConcept C41008148 @default.
- W2894524622 hasConcept C518677369 @default.
- W2894524622 hasConcept C58640448 @default.
- W2894524622 hasConcept C62649853 @default.
- W2894524622 hasConcept C73555534 @default.
- W2894524622 hasConcept C86803240 @default.
- W2894524622 hasConcept C92835128 @default.
- W2894524622 hasConcept C9652623 @default.
- W2894524622 hasConceptScore W2894524622C111919701 @default.
- W2894524622 hasConceptScore W2894524622C124101348 @default.
- W2894524622 hasConceptScore W2894524622C136764020 @default.
- W2894524622 hasConceptScore W2894524622C154945302 @default.
- W2894524622 hasConceptScore W2894524622C158709400 @default.
- W2894524622 hasConceptScore W2894524622C159620131 @default.