Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894527439> ?p ?o ?g. }
- W2894527439 endingPage "169" @default.
- W2894527439 startingPage "163" @default.
- W2894527439 abstract "Abstract. Individual tree detection and counting are critical for the forest inventory management. In almost all of these methods that based on remote sensing data, the treetop detection is the most important and essential part. However, due to the diversities of the tree attributes, such as crown size and branch distribution, it is hard to find a universal treetop detector and most of the current detectors need to be carefully designed based on the heuristic or prior knowledge. Hence, to find an efficient and versatile detector, we apply deep neural network to extract and learn the high-level semantic treetop features. In contrast to using manually labelled training data, we innovatively train the network with the pseudo ones that come from the result of the conventional non-supervised treetop detectors which may be not robust in different scenarios. In this study, we use multi-view high-resolution satellite imagery derived DSM (Digital Surface Model) and multispectral orthophoto as data and apply the top-hat by reconstruction (THR) operation to find treetops as the pseudo labels. The FCN (fully convolutional network) is adopted as a pixel-level classification network to segment the input image into treetops and non-treetops pixels. Our experiments show that the FCN based treetop detector is able to achieve a detection accuracy of 99.7 % at the prairie area and 66.3 % at the complicated town area which shows better performance than THR in the various scenarios. This study demonstrates that without manual labels, the FCN treetop detector can be trained by the pseudo labels that generated using the non-supervised detector and achieve better and robust results in different scenarios." @default.
- W2894527439 created "2018-10-05" @default.
- W2894527439 creator A5001114751 @default.
- W2894527439 creator A5017812815 @default.
- W2894527439 creator A5065515283 @default.
- W2894527439 creator A5085145203 @default.
- W2894527439 date "2018-09-26" @default.
- W2894527439 modified "2023-10-01" @default.
- W2894527439 title "A STUDY OF USING FULLY CONVOLUTIONAL NETWORK FOR TREETOP DETECTION ON REMOTE SENSING DATA" @default.
- W2894527439 cites W1620412164 @default.
- W2894527439 cites W1903029394 @default.
- W2894527439 cites W1940710089 @default.
- W2894527439 cites W1990503995 @default.
- W2894527439 cites W2008469107 @default.
- W2894527439 cites W2016241235 @default.
- W2894527439 cites W2022591200 @default.
- W2894527439 cites W2027532349 @default.
- W2894527439 cites W2033421621 @default.
- W2894527439 cites W2045770636 @default.
- W2894527439 cites W2082661999 @default.
- W2894527439 cites W2086118991 @default.
- W2894527439 cites W2109850379 @default.
- W2894527439 cites W2124194493 @default.
- W2894527439 cites W2131058553 @default.
- W2894527439 cites W2146974384 @default.
- W2894527439 cites W2147153167 @default.
- W2894527439 cites W2157840858 @default.
- W2894527439 cites W2158411533 @default.
- W2894527439 cites W2159105546 @default.
- W2894527439 cites W2460668451 @default.
- W2894527439 cites W2464913660 @default.
- W2894527439 cites W2543281563 @default.
- W2894527439 cites W2610147853 @default.
- W2894527439 cites W2620972937 @default.
- W2894527439 cites W2746824153 @default.
- W2894527439 cites W2752278344 @default.
- W2894527439 cites W2766399967 @default.
- W2894527439 cites W2774116070 @default.
- W2894527439 cites W2945666536 @default.
- W2894527439 cites W2963037989 @default.
- W2894527439 cites W933663465 @default.
- W2894527439 doi "https://doi.org/10.5194/isprs-annals-iv-1-163-2018" @default.
- W2894527439 hasPublicationYear "2018" @default.
- W2894527439 type Work @default.
- W2894527439 sameAs 2894527439 @default.
- W2894527439 citedByCount "6" @default.
- W2894527439 countsByYear W28945274392020 @default.
- W2894527439 countsByYear W28945274392021 @default.
- W2894527439 countsByYear W28945274392022 @default.
- W2894527439 crossrefType "journal-article" @default.
- W2894527439 hasAuthorship W2894527439A5001114751 @default.
- W2894527439 hasAuthorship W2894527439A5017812815 @default.
- W2894527439 hasAuthorship W2894527439A5065515283 @default.
- W2894527439 hasAuthorship W2894527439A5085145203 @default.
- W2894527439 hasBestOaLocation W28945274391 @default.
- W2894527439 hasConcept C113174947 @default.
- W2894527439 hasConcept C124101348 @default.
- W2894527439 hasConcept C134306372 @default.
- W2894527439 hasConcept C153180895 @default.
- W2894527439 hasConcept C154945302 @default.
- W2894527439 hasConcept C160633673 @default.
- W2894527439 hasConcept C173163844 @default.
- W2894527439 hasConcept C205649164 @default.
- W2894527439 hasConcept C33923547 @default.
- W2894527439 hasConcept C41008148 @default.
- W2894527439 hasConcept C62649853 @default.
- W2894527439 hasConcept C76155785 @default.
- W2894527439 hasConcept C81363708 @default.
- W2894527439 hasConcept C82789328 @default.
- W2894527439 hasConcept C94915269 @default.
- W2894527439 hasConceptScore W2894527439C113174947 @default.
- W2894527439 hasConceptScore W2894527439C124101348 @default.
- W2894527439 hasConceptScore W2894527439C134306372 @default.
- W2894527439 hasConceptScore W2894527439C153180895 @default.
- W2894527439 hasConceptScore W2894527439C154945302 @default.
- W2894527439 hasConceptScore W2894527439C160633673 @default.
- W2894527439 hasConceptScore W2894527439C173163844 @default.
- W2894527439 hasConceptScore W2894527439C205649164 @default.
- W2894527439 hasConceptScore W2894527439C33923547 @default.
- W2894527439 hasConceptScore W2894527439C41008148 @default.
- W2894527439 hasConceptScore W2894527439C62649853 @default.
- W2894527439 hasConceptScore W2894527439C76155785 @default.
- W2894527439 hasConceptScore W2894527439C81363708 @default.
- W2894527439 hasConceptScore W2894527439C82789328 @default.
- W2894527439 hasConceptScore W2894527439C94915269 @default.
- W2894527439 hasLocation W28945274391 @default.
- W2894527439 hasLocation W28945274392 @default.
- W2894527439 hasLocation W28945274393 @default.
- W2894527439 hasOpenAccess W2894527439 @default.
- W2894527439 hasPrimaryLocation W28945274391 @default.
- W2894527439 hasRelatedWork W1630889572 @default.
- W2894527439 hasRelatedWork W2136485282 @default.
- W2894527439 hasRelatedWork W2139294397 @default.
- W2894527439 hasRelatedWork W2175746458 @default.
- W2894527439 hasRelatedWork W2406522397 @default.
- W2894527439 hasRelatedWork W2546871836 @default.
- W2894527439 hasRelatedWork W2613736958 @default.
- W2894527439 hasRelatedWork W2726121760 @default.