Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894547417> ?p ?o ?g. }
- W2894547417 endingPage "834" @default.
- W2894547417 startingPage "813" @default.
- W2894547417 abstract "Abstract. Oxidation flow reactors (OFRs) are a promising complement to environmental chambers for investigating atmospheric oxidation processes and secondary aerosol formation. However, questions have been raised about how representative the chemistry within OFRs is of that in the troposphere. We investigate the fates of organic peroxy radicals (RO2), which play a central role in atmospheric organic chemistry, in OFRs and environmental chambers by chemical kinetic modeling and compare to a variety of ambient conditions to help define a range of atmospherically relevant OFR operating conditions. For most types of RO2, their bimolecular fates in OFRs are mainly RO2+HO2 and RO2+NO, similar to chambers and atmospheric studies. For substituted primary RO2 and acyl RO2, RO2+RO2 can make a significant contribution to the fate of RO2 in OFRs, chambers and the atmosphere, but RO2+RO2 in OFRs is in general somewhat less important than in the atmosphere. At high NO, RO2+NO dominates RO2 fate in OFRs, as in the atmosphere. At a high UV lamp setting in OFRs, RO2+OH can be a major RO2 fate and RO2 isomerization can be negligible for common multifunctional RO2, both of which deviate from common atmospheric conditions. In the OFR254 operation mode (for which OH is generated only from the photolysis of added O3), we cannot identify any conditions that can simultaneously avoid significant organic photolysis at 254 nm and lead to RO2 lifetimes long enough (∼ 10 s) to allow atmospherically relevant RO2 isomerization. In the OFR185 mode (for which OH is generated from reactions initiated by 185 nm photons), high relative humidity, low UV intensity and low precursor concentrations are recommended for the atmospherically relevant gas-phase chemistry of both stable species and RO2. These conditions ensure minor or negligible RO2+OH and a relative importance of RO2 isomerization in RO2 fate in OFRs within ∼×2 of that in the atmosphere. Under these conditions, the photochemical age within OFR185 systems can reach a few equivalent days at most, encompassing the typical ages for maximum secondary organic aerosol (SOA) production. A small increase in OFR temperature may allow the relative importance of RO2 isomerization to approach the ambient values. To study the heterogeneous oxidation of SOA formed under atmospherically relevant OFR conditions, a different UV source with higher intensity is needed after the SOA formation stage, which can be done with another reactor in series. Finally, we recommend evaluating the atmospheric relevance of RO2 chemistry by always reporting measured and/or estimated OH, HO2, NO, NO2 and OH reactivity (or at least precursor composition and concentration) in all chamber and flow reactor experiments. An easy-to-use RO2 fate estimator program is included with this paper to facilitate the investigation of this topic in future studies." @default.
- W2894547417 created "2018-10-05" @default.
- W2894547417 creator A5001952834 @default.
- W2894547417 creator A5033746678 @default.
- W2894547417 creator A5046587804 @default.
- W2894547417 creator A5055233190 @default.
- W2894547417 creator A5081595136 @default.
- W2894547417 date "2019-01-22" @default.
- W2894547417 modified "2023-10-06" @default.
- W2894547417 title "Organic peroxy radical chemistry in oxidation flow reactors and environmental chambers and their atmospheric relevance" @default.
- W2894547417 cites W1564094774 @default.
- W2894547417 cites W1893507388 @default.
- W2894547417 cites W1927555045 @default.
- W2894547417 cites W1932223131 @default.
- W2894547417 cites W1960415144 @default.
- W2894547417 cites W1970939858 @default.
- W2894547417 cites W1976167963 @default.
- W2894547417 cites W1978153810 @default.
- W2894547417 cites W1980182854 @default.
- W2894547417 cites W1988058823 @default.
- W2894547417 cites W1990526709 @default.
- W2894547417 cites W1995167560 @default.
- W2894547417 cites W1996556904 @default.
- W2894547417 cites W2004920665 @default.
- W2894547417 cites W2021055637 @default.
- W2894547417 cites W2044724516 @default.
- W2894547417 cites W2048733401 @default.
- W2894547417 cites W2052748907 @default.
- W2894547417 cites W2077425974 @default.
- W2894547417 cites W2081431590 @default.
- W2894547417 cites W2105567257 @default.
- W2894547417 cites W2107433593 @default.
- W2894547417 cites W2108903266 @default.
- W2894547417 cites W2109620371 @default.
- W2894547417 cites W2114419644 @default.
- W2894547417 cites W2121941478 @default.
- W2894547417 cites W2128484041 @default.
- W2894547417 cites W2130353715 @default.
- W2894547417 cites W2131595100 @default.
- W2894547417 cites W2137880172 @default.
- W2894547417 cites W2138542831 @default.
- W2894547417 cites W2140741600 @default.
- W2894547417 cites W2164095740 @default.
- W2894547417 cites W2170370505 @default.
- W2894547417 cites W2202417292 @default.
- W2894547417 cites W2265107222 @default.
- W2894547417 cites W2300448265 @default.
- W2894547417 cites W2312300077 @default.
- W2894547417 cites W2317953987 @default.
- W2894547417 cites W2318445405 @default.
- W2894547417 cites W2328328852 @default.
- W2894547417 cites W2344321287 @default.
- W2894547417 cites W2345714134 @default.
- W2894547417 cites W2402210174 @default.
- W2894547417 cites W2463479250 @default.
- W2894547417 cites W2467403406 @default.
- W2894547417 cites W2537339873 @default.
- W2894547417 cites W2539260159 @default.
- W2894547417 cites W2541182666 @default.
- W2894547417 cites W2563475945 @default.
- W2894547417 cites W2568173348 @default.
- W2894547417 cites W2580808178 @default.
- W2894547417 cites W2584528186 @default.
- W2894547417 cites W2599573005 @default.
- W2894547417 cites W2604462911 @default.
- W2894547417 cites W2605626298 @default.
- W2894547417 cites W2726664416 @default.
- W2894547417 cites W2770604572 @default.
- W2894547417 cites W2779536575 @default.
- W2894547417 cites W2794087825 @default.
- W2894547417 cites W2809912418 @default.
- W2894547417 cites W2888334030 @default.
- W2894547417 doi "https://doi.org/10.5194/acp-19-813-2019" @default.
- W2894547417 hasPublicationYear "2019" @default.
- W2894547417 type Work @default.
- W2894547417 sameAs 2894547417 @default.
- W2894547417 citedByCount "30" @default.
- W2894547417 countsByYear W28945474172019 @default.
- W2894547417 countsByYear W28945474172020 @default.
- W2894547417 countsByYear W28945474172021 @default.
- W2894547417 countsByYear W28945474172022 @default.
- W2894547417 countsByYear W28945474172023 @default.
- W2894547417 crossrefType "journal-article" @default.
- W2894547417 hasAuthorship W2894547417A5001952834 @default.
- W2894547417 hasAuthorship W2894547417A5033746678 @default.
- W2894547417 hasAuthorship W2894547417A5046587804 @default.
- W2894547417 hasAuthorship W2894547417A5055233190 @default.
- W2894547417 hasAuthorship W2894547417A5081595136 @default.
- W2894547417 hasBestOaLocation W28945474171 @default.
- W2894547417 hasConcept C121332964 @default.
- W2894547417 hasConcept C126661725 @default.
- W2894547417 hasConcept C139066938 @default.
- W2894547417 hasConcept C153294291 @default.
- W2894547417 hasConcept C161790260 @default.
- W2894547417 hasConcept C178790620 @default.
- W2894547417 hasConcept C185592680 @default.
- W2894547417 hasConcept C54582936 @default.
- W2894547417 hasConcept C65440619 @default.