Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894551204> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2894551204 endingPage "103" @default.
- W2894551204 startingPage "99" @default.
- W2894551204 abstract "Prior research in falls risk prediction often relies on qualitative and/or clinical methods. There are two challenges with these methods. First, qualitative methods typically use falls history to determine falls risk. Second, clinical methods do not quantify the uncertainty in the classification decision. In this paper, we propose using Bayesian classification to predict falls risk using vectors of gait variables shown to contribute to falls risk.(1) Using a vector of risk ratios for specific gait variables shown to contribute to falls risk, how can older adults be classified as low or high falls risk? and (2) how can the uncertainty in the classifier decision be quantified when using a vector of gait variables?Using a pressure sensitive walkway, biomechanical measurements of gait were collected from 854 adults over the age of 65. In our method, we first determine low and high falls risk labels for vectors of risk ratios using the k-means algorithm. Next, the posterior probability of low or high falls risk class membership is obtained from a two component Gaussian mixture model (GMM) of gait vectors, which enables risk assessment directly from the underlying biomechanics. We classify the gait vectors using a threshold based on Youden's J statistic.Through a Monte Carlo simulation and an analysis of the receiver operating characteristic (ROC), we demonstrate that our Bayesian classifier, when compared to the k-means falls risk labels, achieves an accuracy greater than 96% at predicting low or high falls risk.Our analysis indicates that our approach based on a Bayesian framework and an individual's underlying biomechanics can predict falls risk while quantifying uncertainty in the classification decision." @default.
- W2894551204 created "2018-10-12" @default.
- W2894551204 creator A5019660140 @default.
- W2894551204 creator A5030748919 @default.
- W2894551204 creator A5039219991 @default.
- W2894551204 date "2019-01-01" @default.
- W2894551204 modified "2023-09-24" @default.
- W2894551204 title "Bayesian classification of falls risk" @default.
- W2894551204 cites W1541250240 @default.
- W2894551204 cites W1974704788 @default.
- W2894551204 cites W1975407158 @default.
- W2894551204 cites W1991881145 @default.
- W2894551204 cites W1997629182 @default.
- W2894551204 cites W1999533440 @default.
- W2894551204 cites W2013130211 @default.
- W2894551204 cites W2024321742 @default.
- W2894551204 cites W2060762518 @default.
- W2894551204 cites W2066530413 @default.
- W2894551204 cites W2067581867 @default.
- W2894551204 cites W2105672283 @default.
- W2894551204 cites W2125099508 @default.
- W2894551204 cites W2132677633 @default.
- W2894551204 cites W2151529239 @default.
- W2894551204 cites W2335125833 @default.
- W2894551204 cites W2561981131 @default.
- W2894551204 cites W2591781834 @default.
- W2894551204 cites W2801415007 @default.
- W2894551204 doi "https://doi.org/10.1016/j.gaitpost.2018.09.028" @default.
- W2894551204 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30312848" @default.
- W2894551204 hasPublicationYear "2019" @default.
- W2894551204 type Work @default.
- W2894551204 sameAs 2894551204 @default.
- W2894551204 citedByCount "6" @default.
- W2894551204 countsByYear W28945512042019 @default.
- W2894551204 countsByYear W28945512042020 @default.
- W2894551204 countsByYear W28945512042021 @default.
- W2894551204 crossrefType "journal-article" @default.
- W2894551204 hasAuthorship W2894551204A5019660140 @default.
- W2894551204 hasAuthorship W2894551204A5030748919 @default.
- W2894551204 hasAuthorship W2894551204A5039219991 @default.
- W2894551204 hasBestOaLocation W28945512042 @default.
- W2894551204 hasConcept C105795698 @default.
- W2894551204 hasConcept C107673813 @default.
- W2894551204 hasConcept C119857082 @default.
- W2894551204 hasConcept C12267149 @default.
- W2894551204 hasConcept C151800584 @default.
- W2894551204 hasConcept C153180895 @default.
- W2894551204 hasConcept C154945302 @default.
- W2894551204 hasConcept C173906292 @default.
- W2894551204 hasConcept C33923547 @default.
- W2894551204 hasConcept C41008148 @default.
- W2894551204 hasConcept C52001869 @default.
- W2894551204 hasConcept C57830394 @default.
- W2894551204 hasConcept C58471807 @default.
- W2894551204 hasConcept C71924100 @default.
- W2894551204 hasConcept C89128539 @default.
- W2894551204 hasConcept C99508421 @default.
- W2894551204 hasConceptScore W2894551204C105795698 @default.
- W2894551204 hasConceptScore W2894551204C107673813 @default.
- W2894551204 hasConceptScore W2894551204C119857082 @default.
- W2894551204 hasConceptScore W2894551204C12267149 @default.
- W2894551204 hasConceptScore W2894551204C151800584 @default.
- W2894551204 hasConceptScore W2894551204C153180895 @default.
- W2894551204 hasConceptScore W2894551204C154945302 @default.
- W2894551204 hasConceptScore W2894551204C173906292 @default.
- W2894551204 hasConceptScore W2894551204C33923547 @default.
- W2894551204 hasConceptScore W2894551204C41008148 @default.
- W2894551204 hasConceptScore W2894551204C52001869 @default.
- W2894551204 hasConceptScore W2894551204C57830394 @default.
- W2894551204 hasConceptScore W2894551204C58471807 @default.
- W2894551204 hasConceptScore W2894551204C71924100 @default.
- W2894551204 hasConceptScore W2894551204C89128539 @default.
- W2894551204 hasConceptScore W2894551204C99508421 @default.
- W2894551204 hasLocation W28945512041 @default.
- W2894551204 hasLocation W28945512042 @default.
- W2894551204 hasLocation W28945512043 @default.
- W2894551204 hasOpenAccess W2894551204 @default.
- W2894551204 hasPrimaryLocation W28945512041 @default.
- W2894551204 hasRelatedWork W2043569587 @default.
- W2894551204 hasRelatedWork W2539163683 @default.
- W2894551204 hasRelatedWork W2595988085 @default.
- W2894551204 hasRelatedWork W2979979539 @default.
- W2894551204 hasRelatedWork W3105251098 @default.
- W2894551204 hasRelatedWork W3127425528 @default.
- W2894551204 hasRelatedWork W4205958290 @default.
- W2894551204 hasRelatedWork W4311106074 @default.
- W2894551204 hasRelatedWork W4313203779 @default.
- W2894551204 hasRelatedWork W4313549251 @default.
- W2894551204 hasVolume "67" @default.
- W2894551204 isParatext "false" @default.
- W2894551204 isRetracted "false" @default.
- W2894551204 magId "2894551204" @default.
- W2894551204 workType "article" @default.