Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894553361> ?p ?o ?g. }
- W2894553361 endingPage "3290" @default.
- W2894553361 startingPage "3290" @default.
- W2894553361 abstract "Powdery mildew is one of the dominant diseases in winter wheat. The accurate monitoring of powdery mildew is important for crop management and production. Satellite-based remote sensing monitoring has been proven as an efficient tool for regional disease detection and monitoring. However, the information provided by single-date satellite scene is hard to achieve acceptable accuracy for powdery mildew disease, and incorporation of early period contextual information of winter wheat can improve this situation. In this study, a multi-temporal satellite data based powdery mildew detecting approach had been developed for regional disease mapping. Firstly, the Lansat-8 scenes that covered six winter wheat growth periods (expressed in chronological order as periods 1 to 6) were collected to calculate typical vegetation indices (VIs), which include disease water stress index (DSWI), optimized soil adjusted vegetation index (OSAVI), shortwave infrared water stress index (SIWSI), and triangular vegetation index (TVI). A multi-temporal VIs-based k-nearest neighbors (KNN) approach was then developed to produce the regional disease distribution. Meanwhile, a backward stepwise elimination method was used to confirm the optimal multi-temporal combination for KNN monitoring model. A classification and regression tree (CART) and back propagation neural networks (BPNN) approaches were used for comparison and validation of initial results. VIs of all periods except 1 and 3 provided the best multi-temporal data set for winter wheat powdery mildew monitoring. Compared with the traditional single-date (period 6) image, the multi-temporal images based KNN approach provided more disease information during the disease development, and had an accuracy of 84.6%. Meanwhile, the accuracy of the proposed approach had 11.5% and 3.8% higher than the multi-temporal images-based CART and BPNN models’, respectively. These results suggest that the use of satellite images for early critical disease infection periods is essential for improving the accuracy of monitoring models. Additionally, satellite imagery also assists in monitoring powdery mildew in late wheat growth periods." @default.
- W2894553361 created "2018-10-12" @default.
- W2894553361 creator A5014118419 @default.
- W2894553361 creator A5019634976 @default.
- W2894553361 creator A5025648698 @default.
- W2894553361 creator A5049898739 @default.
- W2894553361 creator A5057149005 @default.
- W2894553361 creator A5058135898 @default.
- W2894553361 creator A5063210570 @default.
- W2894553361 date "2018-09-30" @default.
- W2894553361 modified "2023-10-17" @default.
- W2894553361 title "Integrating Early Growth Information to Monitor Winter Wheat Powdery Mildew Using Multi-Temporal Landsat-8 Imagery" @default.
- W2894553361 cites W1964217023 @default.
- W2894553361 cites W1973163442 @default.
- W2894553361 cites W1983702133 @default.
- W2894553361 cites W1987352360 @default.
- W2894553361 cites W1989203457 @default.
- W2894553361 cites W1991879903 @default.
- W2894553361 cites W1999634531 @default.
- W2894553361 cites W2006646591 @default.
- W2894553361 cites W2009284521 @default.
- W2894553361 cites W2012686349 @default.
- W2894553361 cites W2013284577 @default.
- W2894553361 cites W2024700522 @default.
- W2894553361 cites W2031614250 @default.
- W2894553361 cites W2032454934 @default.
- W2894553361 cites W2039471474 @default.
- W2894553361 cites W2045269790 @default.
- W2894553361 cites W2052779929 @default.
- W2894553361 cites W2057061710 @default.
- W2894553361 cites W2060973285 @default.
- W2894553361 cites W2064632414 @default.
- W2894553361 cites W2065533253 @default.
- W2894553361 cites W2068784360 @default.
- W2894553361 cites W2074252549 @default.
- W2894553361 cites W2082436271 @default.
- W2894553361 cites W2083577712 @default.
- W2894553361 cites W2085613837 @default.
- W2894553361 cites W2086372322 @default.
- W2894553361 cites W2096996101 @default.
- W2894553361 cites W2098759488 @default.
- W2894553361 cites W2107472775 @default.
- W2894553361 cites W2122111042 @default.
- W2894553361 cites W2130372754 @default.
- W2894553361 cites W2145887856 @default.
- W2894553361 cites W2161815745 @default.
- W2894553361 cites W2162772680 @default.
- W2894553361 cites W2164288075 @default.
- W2894553361 cites W218515012 @default.
- W2894553361 cites W2271052966 @default.
- W2894553361 cites W2619336227 @default.
- W2894553361 cites W2740594002 @default.
- W2894553361 cites W2796586856 @default.
- W2894553361 cites W2797065993 @default.
- W2894553361 cites W2808070124 @default.
- W2894553361 doi "https://doi.org/10.3390/s18103290" @default.
- W2894553361 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6210596" @default.
- W2894553361 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30274362" @default.
- W2894553361 hasPublicationYear "2018" @default.
- W2894553361 type Work @default.
- W2894553361 sameAs 2894553361 @default.
- W2894553361 citedByCount "15" @default.
- W2894553361 countsByYear W28945533612019 @default.
- W2894553361 countsByYear W28945533612020 @default.
- W2894553361 countsByYear W28945533612021 @default.
- W2894553361 countsByYear W28945533612022 @default.
- W2894553361 countsByYear W28945533612023 @default.
- W2894553361 crossrefType "journal-article" @default.
- W2894553361 hasAuthorship W2894553361A5014118419 @default.
- W2894553361 hasAuthorship W2894553361A5019634976 @default.
- W2894553361 hasAuthorship W2894553361A5025648698 @default.
- W2894553361 hasAuthorship W2894553361A5049898739 @default.
- W2894553361 hasAuthorship W2894553361A5057149005 @default.
- W2894553361 hasAuthorship W2894553361A5058135898 @default.
- W2894553361 hasAuthorship W2894553361A5063210570 @default.
- W2894553361 hasBestOaLocation W28945533611 @default.
- W2894553361 hasConcept C127413603 @default.
- W2894553361 hasConcept C142724271 @default.
- W2894553361 hasConcept C146978453 @default.
- W2894553361 hasConcept C1549246 @default.
- W2894553361 hasConcept C19269812 @default.
- W2894553361 hasConcept C205649164 @default.
- W2894553361 hasConcept C25989453 @default.
- W2894553361 hasConcept C2776133958 @default.
- W2894553361 hasConcept C2779336322 @default.
- W2894553361 hasConcept C39432304 @default.
- W2894553361 hasConcept C41008148 @default.
- W2894553361 hasConcept C62649853 @default.
- W2894553361 hasConcept C6557445 @default.
- W2894553361 hasConcept C71924100 @default.
- W2894553361 hasConcept C86803240 @default.
- W2894553361 hasConceptScore W2894553361C127413603 @default.
- W2894553361 hasConceptScore W2894553361C142724271 @default.
- W2894553361 hasConceptScore W2894553361C146978453 @default.
- W2894553361 hasConceptScore W2894553361C1549246 @default.
- W2894553361 hasConceptScore W2894553361C19269812 @default.
- W2894553361 hasConceptScore W2894553361C205649164 @default.
- W2894553361 hasConceptScore W2894553361C25989453 @default.