Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894559705> ?p ?o ?g. }
- W2894559705 endingPage "143" @default.
- W2894559705 startingPage "104" @default.
- W2894559705 abstract "We propose a geometric framework to assess global sensitivity in Bayesian nonparametric models for density estimation. We study sensitivity of nonparametric Bayesian models for density estimation, based on Dirichlet-type priors, to perturbations of either the precision parameter or the base probability measure. To quantify the different effects of the perturbations of the parameters and hyperparameters in these models on the posterior, we define three geometrically-motivated global sensitivity measures based on geodesic paths and distances computed under the nonparametric Fisher-Rao Riemannian metric on the space of densities, applied to posterior samples of densities: (1) the Fisher-Rao distance between density averages of posterior samples, (2) the log-ratio of Karcher variances of posterior samples, and (3) the norm of the difference of scaled cumulative eigenvalues of empirical covariance operators obtained from posterior samples. We validate our approach using multiple simulation studies, and consider the problem of sensitivity analysis for Bayesian density estimation models in the context of three real datasets that have previously been studied." @default.
- W2894559705 created "2018-10-12" @default.
- W2894559705 creator A5012138072 @default.
- W2894559705 creator A5087672591 @default.
- W2894559705 date "2018-10-02" @default.
- W2894559705 modified "2023-09-25" @default.
- W2894559705 title "Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models" @default.
- W2894559705 cites W1196702536 @default.
- W2894559705 cites W1528242606 @default.
- W2894559705 cites W1584961538 @default.
- W2894559705 cites W1911749844 @default.
- W2894559705 cites W1966405376 @default.
- W2894559705 cites W1974600023 @default.
- W2894559705 cites W1977861875 @default.
- W2894559705 cites W1980298887 @default.
- W2894559705 cites W2007957409 @default.
- W2894559705 cites W2011416738 @default.
- W2894559705 cites W2021410730 @default.
- W2894559705 cites W2025955162 @default.
- W2894559705 cites W2026999222 @default.
- W2894559705 cites W2038885294 @default.
- W2894559705 cites W2041232225 @default.
- W2894559705 cites W2053405531 @default.
- W2894559705 cites W2066131681 @default.
- W2894559705 cites W2067316154 @default.
- W2894559705 cites W2069429561 @default.
- W2894559705 cites W2070047497 @default.
- W2894559705 cites W2070557423 @default.
- W2894559705 cites W2071940340 @default.
- W2894559705 cites W2072169887 @default.
- W2894559705 cites W2079501320 @default.
- W2894559705 cites W2089484716 @default.
- W2894559705 cites W2091797506 @default.
- W2894559705 cites W2092952655 @default.
- W2894559705 cites W2097441841 @default.
- W2894559705 cites W2115870554 @default.
- W2894559705 cites W2123748412 @default.
- W2894559705 cites W2125237257 @default.
- W2894559705 cites W2141177889 @default.
- W2894559705 cites W2141770651 @default.
- W2894559705 cites W2162469599 @default.
- W2894559705 cites W2475483989 @default.
- W2894559705 cites W2552872240 @default.
- W2894559705 cites W2559900549 @default.
- W2894559705 cites W2963171485 @default.
- W2894559705 cites W2964186304 @default.
- W2894559705 cites W4254499902 @default.
- W2894559705 cites W4302413401 @default.
- W2894559705 cites W49615945 @default.
- W2894559705 cites W65070834 @default.
- W2894559705 doi "https://doi.org/10.1007/s13171-018-0145-7" @default.
- W2894559705 hasPublicationYear "2018" @default.
- W2894559705 type Work @default.
- W2894559705 sameAs 2894559705 @default.
- W2894559705 citedByCount "2" @default.
- W2894559705 countsByYear W28945597052019 @default.
- W2894559705 countsByYear W28945597052023 @default.
- W2894559705 crossrefType "journal-article" @default.
- W2894559705 hasAuthorship W2894559705A5012138072 @default.
- W2894559705 hasAuthorship W2894559705A5087672591 @default.
- W2894559705 hasBestOaLocation W28945597052 @default.
- W2894559705 hasConcept C102366305 @default.
- W2894559705 hasConcept C105795698 @default.
- W2894559705 hasConcept C107673813 @default.
- W2894559705 hasConcept C11413529 @default.
- W2894559705 hasConcept C127413603 @default.
- W2894559705 hasConcept C134306372 @default.
- W2894559705 hasConcept C162324750 @default.
- W2894559705 hasConcept C169214877 @default.
- W2894559705 hasConcept C176217482 @default.
- W2894559705 hasConcept C177769412 @default.
- W2894559705 hasConcept C178650346 @default.
- W2894559705 hasConcept C182310444 @default.
- W2894559705 hasConcept C185429906 @default.
- W2894559705 hasConcept C189508267 @default.
- W2894559705 hasConcept C21200559 @default.
- W2894559705 hasConcept C21547014 @default.
- W2894559705 hasConcept C24326235 @default.
- W2894559705 hasConcept C28826006 @default.
- W2894559705 hasConcept C33923547 @default.
- W2894559705 hasConcept C8642999 @default.
- W2894559705 hasConceptScore W2894559705C102366305 @default.
- W2894559705 hasConceptScore W2894559705C105795698 @default.
- W2894559705 hasConceptScore W2894559705C107673813 @default.
- W2894559705 hasConceptScore W2894559705C11413529 @default.
- W2894559705 hasConceptScore W2894559705C127413603 @default.
- W2894559705 hasConceptScore W2894559705C134306372 @default.
- W2894559705 hasConceptScore W2894559705C162324750 @default.
- W2894559705 hasConceptScore W2894559705C169214877 @default.
- W2894559705 hasConceptScore W2894559705C176217482 @default.
- W2894559705 hasConceptScore W2894559705C177769412 @default.
- W2894559705 hasConceptScore W2894559705C178650346 @default.
- W2894559705 hasConceptScore W2894559705C182310444 @default.
- W2894559705 hasConceptScore W2894559705C185429906 @default.
- W2894559705 hasConceptScore W2894559705C189508267 @default.
- W2894559705 hasConceptScore W2894559705C21200559 @default.
- W2894559705 hasConceptScore W2894559705C21547014 @default.
- W2894559705 hasConceptScore W2894559705C24326235 @default.