Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894559996> ?p ?o ?g. }
- W2894559996 abstract "The parasite Plasmodium falciparum is the most lethal species of Plasmodium to cause serious malaria infection in humans, and with resistance developing rapidly novel treatment modalities are currently being sought, one of which being combinations of existing compounds. The discovery of combinations of antimalarial drugs that act synergistically with one another is hence of great importance; however an exhaustive experimental screen of large drug space in a pairwise manner is not an option. In this study we apply our machine learning approach, Combination Synergy Estimation (CoSynE), which can predict novel synergistic drug interactions using only prior experimental combination screening data and knowledge of compound molecular structures, to a dataset of 1,540 antimalarial drug combinations in which 22.2% were synergistic. Cross validation of our model showed that synergistic CoSynE predictions are enriched 2.74x compared to random selection when both compounds in a predicted combination are known from other combinations among the training data, 2.36x when only one compound is known from the training data, and 1.5x for entirely novel combinations. We prospectively validated our model by making predictions for 185 combinations of 23 entirely novel compounds. CoSynE predicted 20 combinations to be synergistic, which was experimentally validated for 9 of them (45%), corresponding to an enrichment of 1.76x compared to random selection from this prospective data set. Such enrichment corresponds to a 43% reduction in experimental effort. Interestingly, we found that pairwise screening of the compounds CoSynE individually predicted to be synergistic would result in an enrichment of 1.36x compared to random selection, indicating that synergy among compound combinations is not a random event. The nine novel and correctly predicted synergistic compound combinations mainly (where sufficient bioactivity information is available) consist of efflux or transporter inhibitors (such as hydroxyzine), combined with compounds exhibiting antimalarial activity alone (such as sorafenib, apicidin, or dihydroergotamine). However, not all compound synergies could be rationalized easily in this way. Overall, this study highlights the potential for predictive modelling to expedite the discovery of novel drug combinations in fight against antimalarial resistance, while the underlying approach is also generally applicable." @default.
- W2894559996 created "2018-10-12" @default.
- W2894559996 creator A5006398697 @default.
- W2894559996 creator A5026643759 @default.
- W2894559996 creator A5034234814 @default.
- W2894559996 creator A5044827236 @default.
- W2894559996 creator A5069062997 @default.
- W2894559996 creator A5080650388 @default.
- W2894559996 date "2018-10-02" @default.
- W2894559996 modified "2023-10-18" @default.
- W2894559996 title "Using Machine Learning to Predict Synergistic Antimalarial Compound Combinations With Novel Structures" @default.
- W2894559996 cites W1435191252 @default.
- W2894559996 cites W1603093745 @default.
- W2894559996 cites W1729198678 @default.
- W2894559996 cites W1869829652 @default.
- W2894559996 cites W1974700114 @default.
- W2894559996 cites W1975459288 @default.
- W2894559996 cites W1975728616 @default.
- W2894559996 cites W1977453815 @default.
- W2894559996 cites W1981678399 @default.
- W2894559996 cites W1982301941 @default.
- W2894559996 cites W1988341219 @default.
- W2894559996 cites W2007852671 @default.
- W2894559996 cites W2007953805 @default.
- W2894559996 cites W2008731781 @default.
- W2894559996 cites W2022515140 @default.
- W2894559996 cites W2036291018 @default.
- W2894559996 cites W2040183904 @default.
- W2894559996 cites W2044025814 @default.
- W2894559996 cites W2049525425 @default.
- W2894559996 cites W2050081822 @default.
- W2894559996 cites W2054306510 @default.
- W2894559996 cites W2055955780 @default.
- W2894559996 cites W2061949512 @default.
- W2894559996 cites W2070778360 @default.
- W2894559996 cites W2071259655 @default.
- W2894559996 cites W2082992930 @default.
- W2894559996 cites W2084222138 @default.
- W2894559996 cites W2086012629 @default.
- W2894559996 cites W2099160862 @default.
- W2894559996 cites W2099768941 @default.
- W2894559996 cites W2101092227 @default.
- W2894559996 cites W2107258194 @default.
- W2894559996 cites W2114525333 @default.
- W2894559996 cites W2116566535 @default.
- W2894559996 cites W2119002393 @default.
- W2894559996 cites W2121604817 @default.
- W2894559996 cites W2129662907 @default.
- W2894559996 cites W2130410032 @default.
- W2894559996 cites W2146416540 @default.
- W2894559996 cites W2154480034 @default.
- W2894559996 cites W2155626151 @default.
- W2894559996 cites W2159448584 @default.
- W2894559996 cites W2160568395 @default.
- W2894559996 cites W2170146596 @default.
- W2894559996 cites W2177317049 @default.
- W2894559996 cites W2196714401 @default.
- W2894559996 cites W2209382794 @default.
- W2894559996 cites W2217028767 @default.
- W2894559996 cites W2256455200 @default.
- W2894559996 cites W2273821489 @default.
- W2894559996 cites W2286991429 @default.
- W2894559996 cites W2473645302 @default.
- W2894559996 cites W2571957366 @default.
- W2894559996 cites W2605156573 @default.
- W2894559996 cites W2612467560 @default.
- W2894559996 cites W2614307272 @default.
- W2894559996 cites W2749475934 @default.
- W2894559996 cites W2755621348 @default.
- W2894559996 cites W2790203313 @default.
- W2894559996 cites W2798178310 @default.
- W2894559996 cites W2810727101 @default.
- W2894559996 cites W3100438611 @default.
- W2894559996 cites W784953694 @default.
- W2894559996 cites W814444663 @default.
- W2894559996 doi "https://doi.org/10.3389/fphar.2018.01096" @default.
- W2894559996 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6176478" @default.
- W2894559996 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30333748" @default.
- W2894559996 hasPublicationYear "2018" @default.
- W2894559996 type Work @default.
- W2894559996 sameAs 2894559996 @default.
- W2894559996 citedByCount "23" @default.
- W2894559996 countsByYear W28945599962019 @default.
- W2894559996 countsByYear W28945599962020 @default.
- W2894559996 countsByYear W28945599962021 @default.
- W2894559996 countsByYear W28945599962022 @default.
- W2894559996 countsByYear W28945599962023 @default.
- W2894559996 crossrefType "journal-article" @default.
- W2894559996 hasAuthorship W2894559996A5006398697 @default.
- W2894559996 hasAuthorship W2894559996A5026643759 @default.
- W2894559996 hasAuthorship W2894559996A5034234814 @default.
- W2894559996 hasAuthorship W2894559996A5044827236 @default.
- W2894559996 hasAuthorship W2894559996A5069062997 @default.
- W2894559996 hasAuthorship W2894559996A5080650388 @default.
- W2894559996 hasBestOaLocation W28945599961 @default.
- W2894559996 hasConcept C119857082 @default.
- W2894559996 hasConcept C154945302 @default.
- W2894559996 hasConcept C184898388 @default.
- W2894559996 hasConcept C203014093 @default.
- W2894559996 hasConcept C2777199930 @default.