Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894566366> ?p ?o ?g. }
- W2894566366 endingPage "2330" @default.
- W2894566366 startingPage "2319" @default.
- W2894566366 abstract "Machine learning has shown enormous potential for computer-aided drug discovery. Here we show how modern convolutional neural networks (CNNs) can be applied to structure-based virtual screening. We have coupled our densely connected CNN (DenseNet) with a transfer learning approach which we use to produce an ensemble of protein family-specific models. We conduct an in-depth empirical study and provide the first guidelines on the minimum requirements for adopting a protein family-specific model. Our method also highlights the need for additional data, even in data-rich protein families. Our approach outperforms recent benchmarks on the DUD-E data set and an independent test set constructed from the ChEMBL database. Using a clustered cross-validation on DUD-E, we achieve an average AUC ROC of 0.92 and a 0.5% ROC enrichment factor of 79. This represents an improvement in early enrichment of over 75% compared to a recent machine learning benchmark. Our results demonstrate that the continued improvements in machine learning architecture for computer vision apply to structure-based virtual screening." @default.
- W2894566366 created "2018-10-12" @default.
- W2894566366 creator A5015572211 @default.
- W2894566366 creator A5017415803 @default.
- W2894566366 creator A5031260889 @default.
- W2894566366 creator A5091539085 @default.
- W2894566366 date "2018-10-01" @default.
- W2894566366 modified "2023-10-11" @default.
- W2894566366 title "Protein Family-Specific Models Using Deep Neural Networks and Transfer Learning Improve Virtual Screening and Highlight the Need for More Data" @default.
- W2894566366 cites W1498436455 @default.
- W2894566366 cites W1605578858 @default.
- W2894566366 cites W1656114533 @default.
- W2894566366 cites W1751444511 @default.
- W2894566366 cites W1964513093 @default.
- W2894566366 cites W1968319881 @default.
- W2894566366 cites W1975875968 @default.
- W2894566366 cites W1976526581 @default.
- W2894566366 cites W1985588649 @default.
- W2894566366 cites W1993285168 @default.
- W2894566366 cites W2001816314 @default.
- W2894566366 cites W2003356525 @default.
- W2894566366 cites W2005465759 @default.
- W2894566366 cites W2008732224 @default.
- W2894566366 cites W2013085020 @default.
- W2894566366 cites W2015907087 @default.
- W2894566366 cites W2021295492 @default.
- W2894566366 cites W2021574925 @default.
- W2894566366 cites W2028629022 @default.
- W2894566366 cites W2043212464 @default.
- W2894566366 cites W2052460962 @default.
- W2894566366 cites W2077627456 @default.
- W2894566366 cites W2081152501 @default.
- W2894566366 cites W2097606916 @default.
- W2894566366 cites W2097632784 @default.
- W2894566366 cites W2117539524 @default.
- W2894566366 cites W2119512897 @default.
- W2894566366 cites W2134967712 @default.
- W2894566366 cites W2138770756 @default.
- W2894566366 cites W2140574901 @default.
- W2894566366 cites W2148512505 @default.
- W2894566366 cites W2157825442 @default.
- W2894566366 cites W2239929442 @default.
- W2894566366 cites W2346062110 @default.
- W2894566366 cites W2558272290 @default.
- W2894566366 cites W2589644515 @default.
- W2894566366 cites W2594183968 @default.
- W2894566366 cites W2608559058 @default.
- W2894566366 cites W2739836671 @default.
- W2894566366 cites W2752782242 @default.
- W2894566366 cites W2767106145 @default.
- W2894566366 cites W2776414161 @default.
- W2894566366 cites W2784213390 @default.
- W2894566366 cites W2790459822 @default.
- W2894566366 cites W2964227007 @default.
- W2894566366 cites W3104705366 @default.
- W2894566366 doi "https://doi.org/10.1021/acs.jcim.8b00350" @default.
- W2894566366 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30273487" @default.
- W2894566366 hasPublicationYear "2018" @default.
- W2894566366 type Work @default.
- W2894566366 sameAs 2894566366 @default.
- W2894566366 citedByCount "91" @default.
- W2894566366 countsByYear W28945663662019 @default.
- W2894566366 countsByYear W28945663662020 @default.
- W2894566366 countsByYear W28945663662021 @default.
- W2894566366 countsByYear W28945663662022 @default.
- W2894566366 countsByYear W28945663662023 @default.
- W2894566366 crossrefType "journal-article" @default.
- W2894566366 hasAuthorship W2894566366A5015572211 @default.
- W2894566366 hasAuthorship W2894566366A5017415803 @default.
- W2894566366 hasAuthorship W2894566366A5031260889 @default.
- W2894566366 hasAuthorship W2894566366A5091539085 @default.
- W2894566366 hasBestOaLocation W28945663661 @default.
- W2894566366 hasConcept C103697762 @default.
- W2894566366 hasConcept C108583219 @default.
- W2894566366 hasConcept C119857082 @default.
- W2894566366 hasConcept C124101348 @default.
- W2894566366 hasConcept C13280743 @default.
- W2894566366 hasConcept C150899416 @default.
- W2894566366 hasConcept C154945302 @default.
- W2894566366 hasConcept C169903167 @default.
- W2894566366 hasConcept C177264268 @default.
- W2894566366 hasConcept C185798385 @default.
- W2894566366 hasConcept C199360897 @default.
- W2894566366 hasConcept C205649164 @default.
- W2894566366 hasConcept C41008148 @default.
- W2894566366 hasConcept C50644808 @default.
- W2894566366 hasConcept C58489278 @default.
- W2894566366 hasConcept C60644358 @default.
- W2894566366 hasConcept C63222358 @default.
- W2894566366 hasConcept C74187038 @default.
- W2894566366 hasConcept C81363708 @default.
- W2894566366 hasConcept C86803240 @default.
- W2894566366 hasConceptScore W2894566366C103697762 @default.
- W2894566366 hasConceptScore W2894566366C108583219 @default.
- W2894566366 hasConceptScore W2894566366C119857082 @default.
- W2894566366 hasConceptScore W2894566366C124101348 @default.
- W2894566366 hasConceptScore W2894566366C13280743 @default.
- W2894566366 hasConceptScore W2894566366C150899416 @default.