Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894567070> ?p ?o ?g. }
- W2894567070 endingPage "2990" @default.
- W2894567070 startingPage "2982" @default.
- W2894567070 abstract "The ability to navigate in chemical gradients, called chemotaxis, is crucial for the survival of microorganisms. It allows them to find food and to escape from toxins. Many microorganisms can produce the chemicals to which they respond themselves and use chemotaxis for signaling, which can be seen as a basic form of communication, allowing ensembles of microorganisms to coordinate their behavior, for example, during embryogenesis, biofilm formation, or cellular aggregation. For example, Dictyostelium cells use signaling as a survival strategy: when starving, they produce certain chemicals toward which other cells show taxis. This leads to aggregation of the cells resulting in a multicellular aggregate that can sustain long starvation periods. Remarkably, the past decade has led to the development of synthetic microswimmers, which can self-propel through a solvent, analogously to bacteria and other microorganisms. The mechanism underlying the self-propulsion of synthetic microswimmers like camphor boats, droplet swimmers, and in particular autophoretic Janus colloids involves the production of certain chemicals. As we will discuss in this Account, the same chemicals (phoretic fields) involved in the self-propulsion of a (Janus) microswimmer also act on other ones and bias their swimming direction toward (or away from) the producing microswimmer. Synthetic microswimmers therefore provide a synthetic analogue to motile microorganisms interacting by taxis toward (or away from) self-produced chemical fields. In this Account, we review recent progress in the theoretical description of synthetic chemotaxis mainly based on simulations and field theoretical descriptions. We will begin with single motile particles leaving chemical trails behind with which they interact themselves, leading to effects like self-trapping or self-avoidance. Besides these self-interactions, in ensembles of synthetic motile particles each particle also responds to the chemicals produced by other particles, inducing chemical (or phoretic) cross-interactions. When these interactions are attractive, they commonly lead to clusters, even at low particle density. These clusters may either proceed toward macrophase separation, resembling Dictyostelium aggregation, or, as shown very recently, lead to dynamic clusters of self-limited size (dynamic clustering) as seen in experiments in autophoretic Janus colloids. Besides the classical case where chemical interactions are attractive, this Account discusses, as its main focus, repulsive chemical interactions, which can create a new and less known avenue to pattern formation in active systems leading to a variety of pattern, including clusters which are surrounded by shells of chemicals, traveling waves and more complex continuously reshaping patterns. In all these cases synthetic signalling can crucially determine the collective behavior of synthetic microswimmer ensembles and can be used as a design principle to create patterns in motile active particles." @default.
- W2894567070 created "2018-10-12" @default.
- W2894567070 creator A5015824493 @default.
- W2894567070 creator A5028221319 @default.
- W2894567070 date "2018-10-30" @default.
- W2894567070 modified "2023-10-03" @default.
- W2894567070 title "Synthetic Chemotaxis and Collective Behavior in Active Matter" @default.
- W2894567070 cites W1590719621 @default.
- W2894567070 cites W1601310675 @default.
- W2894567070 cites W1660598416 @default.
- W2894567070 cites W1873756591 @default.
- W2894567070 cites W1914866065 @default.
- W2894567070 cites W1964768708 @default.
- W2894567070 cites W1965424341 @default.
- W2894567070 cites W1975247487 @default.
- W2894567070 cites W1976924243 @default.
- W2894567070 cites W1977248872 @default.
- W2894567070 cites W1984784253 @default.
- W2894567070 cites W1988298906 @default.
- W2894567070 cites W1989609182 @default.
- W2894567070 cites W1991399233 @default.
- W2894567070 cites W1991514902 @default.
- W2894567070 cites W1995664116 @default.
- W2894567070 cites W1998368798 @default.
- W2894567070 cites W1999116645 @default.
- W2894567070 cites W2010540803 @default.
- W2894567070 cites W2011936612 @default.
- W2894567070 cites W2020158707 @default.
- W2894567070 cites W2021117151 @default.
- W2894567070 cites W2036312030 @default.
- W2894567070 cites W2039942900 @default.
- W2894567070 cites W2042892258 @default.
- W2894567070 cites W2042898119 @default.
- W2894567070 cites W2053721026 @default.
- W2894567070 cites W2056527181 @default.
- W2894567070 cites W2061877047 @default.
- W2894567070 cites W2074574519 @default.
- W2894567070 cites W2078683173 @default.
- W2894567070 cites W2081378211 @default.
- W2894567070 cites W2111103219 @default.
- W2894567070 cites W2114196894 @default.
- W2894567070 cites W2124298697 @default.
- W2894567070 cites W2124819114 @default.
- W2894567070 cites W2142362330 @default.
- W2894567070 cites W2150478471 @default.
- W2894567070 cites W2153920886 @default.
- W2894567070 cites W2254764128 @default.
- W2894567070 cites W2304845716 @default.
- W2894567070 cites W2317041321 @default.
- W2894567070 cites W2317222027 @default.
- W2894567070 cites W2333061400 @default.
- W2894567070 cites W2405120243 @default.
- W2894567070 cites W2524043285 @default.
- W2894567070 cites W2527342783 @default.
- W2894567070 cites W2535404910 @default.
- W2894567070 cites W2540316436 @default.
- W2894567070 cites W2547978801 @default.
- W2894567070 cites W2561060295 @default.
- W2894567070 cites W2592232498 @default.
- W2894567070 cites W2595336155 @default.
- W2894567070 cites W2597780365 @default.
- W2894567070 cites W2646691973 @default.
- W2894567070 cites W2761866513 @default.
- W2894567070 cites W2773004836 @default.
- W2894567070 cites W2777500391 @default.
- W2894567070 cites W2789733427 @default.
- W2894567070 cites W2804647587 @default.
- W2894567070 cites W2806963461 @default.
- W2894567070 cites W2890915788 @default.
- W2894567070 cites W3098044051 @default.
- W2894567070 cites W3098270078 @default.
- W2894567070 cites W3102947909 @default.
- W2894567070 cites W3103582174 @default.
- W2894567070 cites W3104565932 @default.
- W2894567070 cites W33856174 @default.
- W2894567070 cites W4231959089 @default.
- W2894567070 cites W4241469124 @default.
- W2894567070 cites W4246424632 @default.
- W2894567070 cites W4250450508 @default.
- W2894567070 cites W4250716583 @default.
- W2894567070 cites W84082587 @default.
- W2894567070 doi "https://doi.org/10.1021/acs.accounts.8b00215" @default.
- W2894567070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30375857" @default.
- W2894567070 hasPublicationYear "2018" @default.
- W2894567070 type Work @default.
- W2894567070 sameAs 2894567070 @default.
- W2894567070 citedByCount "90" @default.
- W2894567070 countsByYear W28945670702018 @default.
- W2894567070 countsByYear W28945670702019 @default.
- W2894567070 countsByYear W28945670702020 @default.
- W2894567070 countsByYear W28945670702021 @default.
- W2894567070 countsByYear W28945670702022 @default.
- W2894567070 countsByYear W28945670702023 @default.
- W2894567070 crossrefType "journal-article" @default.
- W2894567070 hasAuthorship W2894567070A5015824493 @default.
- W2894567070 hasAuthorship W2894567070A5028221319 @default.
- W2894567070 hasBestOaLocation W28945670702 @default.
- W2894567070 hasConcept C104317684 @default.