Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894575234> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2894575234 abstract "Context. The questions of adapting the convolution neural network classifier use in automatic speaker recognition system of critical use (ASRSCU) are considered. The research object is the individual features of the human speech process. Objective. Development of means for separating individual features from the speaker’s speech signal, increasing their informativeness as a result of the factor analysis, their visual representation for the use of the convolution neural network classifier, and optimizing its architecture for the needs of ASRSCU. Method. Measures are proposed to optimize the speaker recognition procedure of the ASRSCU, for which the optimal way of informative features representation and the method of increasing their informativeness are theoretically justified, the topology and measures for increasing of the speaker recognition process efficiency are justified. In particular, it is justified the use of power normalized cepstral coefficients (PNCC) for the description of phonograms recorded in noisy environment conditions. We propose to use Gabor filters to represent information that will be analyzed by a convolution neural network, an optimal method of factor analysis (a sparse main components analyzing method) to reduce of the features vector length while preserving its informativeness, an improved topology of the convolution neural network in which the Gabor filters are integrated in to the convolution layer, which allows them to optimize their parameters during the neural network training process, and in a fully connected layer a deep neural network with a bottleneck layer is used, whose weights after training are uses as inputs for the GMM/HMM control classifier. Results. Methods of representation and optimization of the speaker’s individual features, methods for their visual presentation and improvement of the topology of a convolution neural network for making speaker recognition on their basis. Conclusions. The obtained theoretical results have found empirical confirmation. In particular, the stability of an improved convolution neural network to the noisy input phonograms proved to be higher than the results of an ordinary convolution neural network and a deep neural network. With an SNR increase up to 10 dB, the GMM/HMM classifier is more efficient than the neural network, which can be explained by the efficiency of the used UBM models, but it is much more resource-intensive. Also, the parameters of the Gabor filter bank frames that provide the most variable individual features from the speech signal for speaker recognition are determined empirically." @default.
- W2894575234 created "2018-10-12" @default.
- W2894575234 creator A5061334741 @default.
- W2894575234 creator A5062503503 @default.
- W2894575234 creator A5071076291 @default.
- W2894575234 date "2018-10-04" @default.
- W2894575234 modified "2023-09-23" @default.
- W2894575234 title "THE AUTOMATIC SPEAKER RECOGNITION SYSTEM OF CRITICAL USE CLASSIFIER OPTIMIZATION" @default.
- W2894575234 doi "https://doi.org/10.15588/1607-3274-2018-2-4" @default.
- W2894575234 hasPublicationYear "2018" @default.
- W2894575234 type Work @default.
- W2894575234 sameAs 2894575234 @default.
- W2894575234 citedByCount "3" @default.
- W2894575234 countsByYear W28945752342020 @default.
- W2894575234 crossrefType "journal-article" @default.
- W2894575234 hasAuthorship W2894575234A5061334741 @default.
- W2894575234 hasAuthorship W2894575234A5062503503 @default.
- W2894575234 hasAuthorship W2894575234A5071076291 @default.
- W2894575234 hasBestOaLocation W28945752341 @default.
- W2894575234 hasConcept C133892786 @default.
- W2894575234 hasConcept C151989614 @default.
- W2894575234 hasConcept C153180895 @default.
- W2894575234 hasConcept C154945302 @default.
- W2894575234 hasConcept C175202392 @default.
- W2894575234 hasConcept C28490314 @default.
- W2894575234 hasConcept C41008148 @default.
- W2894575234 hasConcept C50644808 @default.
- W2894575234 hasConcept C52622490 @default.
- W2894575234 hasConcept C81363708 @default.
- W2894575234 hasConcept C95623464 @default.
- W2894575234 hasConceptScore W2894575234C133892786 @default.
- W2894575234 hasConceptScore W2894575234C151989614 @default.
- W2894575234 hasConceptScore W2894575234C153180895 @default.
- W2894575234 hasConceptScore W2894575234C154945302 @default.
- W2894575234 hasConceptScore W2894575234C175202392 @default.
- W2894575234 hasConceptScore W2894575234C28490314 @default.
- W2894575234 hasConceptScore W2894575234C41008148 @default.
- W2894575234 hasConceptScore W2894575234C50644808 @default.
- W2894575234 hasConceptScore W2894575234C52622490 @default.
- W2894575234 hasConceptScore W2894575234C81363708 @default.
- W2894575234 hasConceptScore W2894575234C95623464 @default.
- W2894575234 hasLocation W28945752341 @default.
- W2894575234 hasOpenAccess W2894575234 @default.
- W2894575234 hasPrimaryLocation W28945752341 @default.
- W2894575234 hasRelatedWork W1679636228 @default.
- W2894575234 hasRelatedWork W2354160234 @default.
- W2894575234 hasRelatedWork W2362672010 @default.
- W2894575234 hasRelatedWork W2563096758 @default.
- W2894575234 hasRelatedWork W2920938200 @default.
- W2894575234 hasRelatedWork W2995914718 @default.
- W2894575234 hasRelatedWork W3175075966 @default.
- W2894575234 hasRelatedWork W4221130810 @default.
- W2894575234 hasRelatedWork W4225852842 @default.
- W2894575234 hasRelatedWork W2562673099 @default.
- W2894575234 isParatext "false" @default.
- W2894575234 isRetracted "false" @default.
- W2894575234 magId "2894575234" @default.
- W2894575234 workType "article" @default.