Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894589428> ?p ?o ?g. }
- W2894589428 abstract "The major advantage of MEG/EEG over other neuroimaging methods is its high temporal resolution. Examining the latency of well-studied components can provide a window into the dynamics of cognitive operations beyond traditional response-time (RT) measurements. While RTs reflect the cumulative duration of all time-consuming cognitive operations involved in a task, component latencies can partition this time into cognitively meaningful sub-steps. Surprisingly, most MEG/EEG studies neglect this advantage and restrict analyses to component amplitudes without considering latencies. The major reasons for this neglect might be that, first, the most easily accessible latency measure (peak latency) is often unreliable and that, second, more complex measures are difficult to conceive, implement, and parametrize. The present article illustrates the key advantages and disadvantages of the three main types of latency-measures (peak latency, onset latency, and percent-area latency), introduces a MATLAB function that extracts all these measures and is compatible with common analysis tools, discusses the most important parameter choices for different research questions and components of interest, and demonstrates its use by various group analyses on one planar gradiometer pair of the publicly available Wakeman and Henson (2015) data. The introduced function can extract from group data not only single-subject latencies, but also grand-average and jackknife latencies. Furthermore, it gives the choice between different approaches to automatically set baselines and anchor points for latency estimation, approaches that were partly developed by me and that capitalize on the informational richness of MEG/EEG data. Although the function comes with a wide range of customization parameters, the default parameters are set so that even beginners get reasonable results. Graphical depictions of latency estimates, baselines, and anchor points overlaid on individual averages further support learning, understanding and trouble-shooting. Once extracted, latency estimates can be submitted to any analysis also available for (averaged) RTs, including tests for mean differences, correlational approaches and cognitive modeling." @default.
- W2894589428 created "2018-10-12" @default.
- W2894589428 creator A5023123837 @default.
- W2894589428 date "2018-10-25" @default.
- W2894589428 modified "2023-10-18" @default.
- W2894589428 title "Estimating the Timing of Cognitive Operations With MEG/EEG Latency Measures: A Primer, a Brief Tutorial, and an Implementation of Various Methods" @default.
- W2894589428 cites W1549231002 @default.
- W2894589428 cites W1575093807 @default.
- W2894589428 cites W1745458420 @default.
- W2894589428 cites W1756350956 @default.
- W2894589428 cites W1965569107 @default.
- W2894589428 cites W1966457205 @default.
- W2894589428 cites W1997311326 @default.
- W2894589428 cites W2010406435 @default.
- W2894589428 cites W2016802010 @default.
- W2894589428 cites W2036804871 @default.
- W2894589428 cites W2040746195 @default.
- W2894589428 cites W2040858483 @default.
- W2894589428 cites W2043208632 @default.
- W2894589428 cites W2045283381 @default.
- W2894589428 cites W2054294508 @default.
- W2894589428 cites W2056348173 @default.
- W2894589428 cites W2059447853 @default.
- W2894589428 cites W2077616447 @default.
- W2894589428 cites W2092353745 @default.
- W2894589428 cites W2120102783 @default.
- W2894589428 cites W2120190536 @default.
- W2894589428 cites W2124333429 @default.
- W2894589428 cites W2128495200 @default.
- W2894589428 cites W2131546177 @default.
- W2894589428 cites W2135786244 @default.
- W2894589428 cites W2143659523 @default.
- W2894589428 cites W2153667747 @default.
- W2894589428 cites W2154424175 @default.
- W2894589428 cites W2159107847 @default.
- W2894589428 cites W2159654758 @default.
- W2894589428 cites W2161498332 @default.
- W2894589428 cites W2166073443 @default.
- W2894589428 cites W2168963208 @default.
- W2894589428 cites W2169248826 @default.
- W2894589428 cites W2176931352 @default.
- W2894589428 cites W2223820570 @default.
- W2894589428 cites W2230060299 @default.
- W2894589428 cites W2261214459 @default.
- W2894589428 cites W2301565783 @default.
- W2894589428 cites W2521162101 @default.
- W2894589428 cites W2527638218 @default.
- W2894589428 cites W2562953409 @default.
- W2894589428 cites W2612382677 @default.
- W2894589428 cites W2618077307 @default.
- W2894589428 cites W2756359083 @default.
- W2894589428 cites W2801253848 @default.
- W2894589428 cites W2950924612 @default.
- W2894589428 cites W4230797216 @default.
- W2894589428 cites W4242800801 @default.
- W2894589428 doi "https://doi.org/10.3389/fnins.2018.00765" @default.
- W2894589428 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6209629" @default.
- W2894589428 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30410431" @default.
- W2894589428 hasPublicationYear "2018" @default.
- W2894589428 type Work @default.
- W2894589428 sameAs 2894589428 @default.
- W2894589428 citedByCount "47" @default.
- W2894589428 countsByYear W28945894282019 @default.
- W2894589428 countsByYear W28945894282020 @default.
- W2894589428 countsByYear W28945894282021 @default.
- W2894589428 countsByYear W28945894282022 @default.
- W2894589428 countsByYear W28945894282023 @default.
- W2894589428 crossrefType "journal-article" @default.
- W2894589428 hasAuthorship W2894589428A5023123837 @default.
- W2894589428 hasBestOaLocation W28945894281 @default.
- W2894589428 hasConcept C153180895 @default.
- W2894589428 hasConcept C154945302 @default.
- W2894589428 hasConcept C15744967 @default.
- W2894589428 hasConcept C169760540 @default.
- W2894589428 hasConcept C169900460 @default.
- W2894589428 hasConcept C41008148 @default.
- W2894589428 hasConcept C522805319 @default.
- W2894589428 hasConcept C76155785 @default.
- W2894589428 hasConcept C82876162 @default.
- W2894589428 hasConceptScore W2894589428C153180895 @default.
- W2894589428 hasConceptScore W2894589428C154945302 @default.
- W2894589428 hasConceptScore W2894589428C15744967 @default.
- W2894589428 hasConceptScore W2894589428C169760540 @default.
- W2894589428 hasConceptScore W2894589428C169900460 @default.
- W2894589428 hasConceptScore W2894589428C41008148 @default.
- W2894589428 hasConceptScore W2894589428C522805319 @default.
- W2894589428 hasConceptScore W2894589428C76155785 @default.
- W2894589428 hasConceptScore W2894589428C82876162 @default.
- W2894589428 hasFunder F4320323390 @default.
- W2894589428 hasLocation W28945894281 @default.
- W2894589428 hasLocation W28945894282 @default.
- W2894589428 hasLocation W28945894283 @default.
- W2894589428 hasLocation W28945894284 @default.
- W2894589428 hasLocation W28945894285 @default.
- W2894589428 hasOpenAccess W2894589428 @default.
- W2894589428 hasPrimaryLocation W28945894281 @default.
- W2894589428 hasRelatedWork W1987753576 @default.
- W2894589428 hasRelatedWork W2033914206 @default.
- W2894589428 hasRelatedWork W2046077695 @default.
- W2894589428 hasRelatedWork W2052158784 @default.