Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894590336> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2894590336 abstract "Learners often have difficulty finding and retrieving relevant learning materials to support their learning goals because of two main challenges. The vocabulary learners use to describe their goals is different from that used by domain experts in teaching materials. This challenge causes a semantic gap. Learners lack sufficient knowledge about the domain they are trying to learn about, so are unable to assemble effective keywords that identify what they wish to learn. This problem presents an intent gap. The work presented in this thesis focuses on addressing the semantic and intent gaps that learners face during an e-Learning recommendation task. The semantic gap is addressed by introducing a method that automatically creates background knowledge in the form of a set of rich learning-focused concepts related to the selected learning domain. The knowledge of teaching experts contained in e-Books is used as a guide to identify important domain concepts. The concepts represent important topics that learners should be interested in. An approach is developed which leverages the concept vocabulary for representing learning materials and this influences retrieval during the recommendation of new learning materials. The effectiveness of our approach is evaluated on a dataset of Machine Learning and Data Mining papers, and our approach outperforms benchmark methods. The results confirm that incorporating background knowledge into the representation of learning materials provides a shared vocabulary for experts and learners, and this enables the recommendation of relevant materials. We address the intent gap by developing an approach which leverages the background knowledge to identify important learning concepts that are employed for refining learners' queries. This approach enables us to automatically identify concepts that are similar to queries, and take advantage of distinctive concept terms for refining learners' queries. Using the refined query allows the search to focus on documents that contain topics which are relevant to the learner. An e-Learning recommender system is developed to evaluate the success of our approach using a collection of learner queries and a dataset of Machine Learning and Data Mining learning materials. Users with different levels of expertise are employed for the evaluation. Results from experts, competent users and beginners all showed that using our method produced documents that were consistently more relevant to learners than when the standard method was used. The results show the benefits in using our knowledge driven approaches to help learners find relevant learning materials." @default.
- W2894590336 created "2018-10-12" @default.
- W2894590336 creator A5063336069 @default.
- W2894590336 date "2018-05-01" @default.
- W2894590336 modified "2023-09-26" @default.
- W2894590336 title "Knowledge driven approaches to e-learning recommendation." @default.
- W2894590336 hasPublicationYear "2018" @default.
- W2894590336 type Work @default.
- W2894590336 sameAs 2894590336 @default.
- W2894590336 citedByCount "0" @default.
- W2894590336 crossrefType "dissertation" @default.
- W2894590336 hasAuthorship W2894590336A5063336069 @default.
- W2894590336 hasConcept C115961682 @default.
- W2894590336 hasConcept C127413603 @default.
- W2894590336 hasConcept C13280743 @default.
- W2894590336 hasConcept C134306372 @default.
- W2894590336 hasConcept C138885662 @default.
- W2894590336 hasConcept C154945302 @default.
- W2894590336 hasConcept C1667742 @default.
- W2894590336 hasConcept C177264268 @default.
- W2894590336 hasConcept C185798385 @default.
- W2894590336 hasConcept C199360897 @default.
- W2894590336 hasConcept C201995342 @default.
- W2894590336 hasConcept C205649164 @default.
- W2894590336 hasConcept C207685749 @default.
- W2894590336 hasConcept C23123220 @default.
- W2894590336 hasConcept C2522767166 @default.
- W2894590336 hasConcept C2777601683 @default.
- W2894590336 hasConcept C2780451532 @default.
- W2894590336 hasConcept C33923547 @default.
- W2894590336 hasConcept C36503486 @default.
- W2894590336 hasConcept C41008148 @default.
- W2894590336 hasConcept C41895202 @default.
- W2894590336 hasConcept C56739046 @default.
- W2894590336 hasConcept C86034646 @default.
- W2894590336 hasConceptScore W2894590336C115961682 @default.
- W2894590336 hasConceptScore W2894590336C127413603 @default.
- W2894590336 hasConceptScore W2894590336C13280743 @default.
- W2894590336 hasConceptScore W2894590336C134306372 @default.
- W2894590336 hasConceptScore W2894590336C138885662 @default.
- W2894590336 hasConceptScore W2894590336C154945302 @default.
- W2894590336 hasConceptScore W2894590336C1667742 @default.
- W2894590336 hasConceptScore W2894590336C177264268 @default.
- W2894590336 hasConceptScore W2894590336C185798385 @default.
- W2894590336 hasConceptScore W2894590336C199360897 @default.
- W2894590336 hasConceptScore W2894590336C201995342 @default.
- W2894590336 hasConceptScore W2894590336C205649164 @default.
- W2894590336 hasConceptScore W2894590336C207685749 @default.
- W2894590336 hasConceptScore W2894590336C23123220 @default.
- W2894590336 hasConceptScore W2894590336C2522767166 @default.
- W2894590336 hasConceptScore W2894590336C2777601683 @default.
- W2894590336 hasConceptScore W2894590336C2780451532 @default.
- W2894590336 hasConceptScore W2894590336C33923547 @default.
- W2894590336 hasConceptScore W2894590336C36503486 @default.
- W2894590336 hasConceptScore W2894590336C41008148 @default.
- W2894590336 hasConceptScore W2894590336C41895202 @default.
- W2894590336 hasConceptScore W2894590336C56739046 @default.
- W2894590336 hasConceptScore W2894590336C86034646 @default.
- W2894590336 hasLocation W28945903361 @default.
- W2894590336 hasOpenAccess W2894590336 @default.
- W2894590336 hasPrimaryLocation W28945903361 @default.
- W2894590336 hasRelatedWork W1980335766 @default.
- W2894590336 hasRelatedWork W2024520683 @default.
- W2894590336 hasRelatedWork W2028640615 @default.
- W2894590336 hasRelatedWork W2106476325 @default.
- W2894590336 hasRelatedWork W2114864808 @default.
- W2894590336 hasRelatedWork W2123655937 @default.
- W2894590336 hasRelatedWork W2139822419 @default.
- W2894590336 hasRelatedWork W2295994131 @default.
- W2894590336 hasRelatedWork W2617364066 @default.
- W2894590336 hasRelatedWork W2623925582 @default.
- W2894590336 hasRelatedWork W2782479558 @default.
- W2894590336 hasRelatedWork W2786722380 @default.
- W2894590336 hasRelatedWork W2945771891 @default.
- W2894590336 hasRelatedWork W2949259106 @default.
- W2894590336 hasRelatedWork W2995405566 @default.
- W2894590336 hasRelatedWork W3025880241 @default.
- W2894590336 hasRelatedWork W3047370346 @default.
- W2894590336 hasRelatedWork W3202062891 @default.
- W2894590336 hasRelatedWork W191035001 @default.
- W2894590336 hasRelatedWork W869441657 @default.
- W2894590336 isParatext "false" @default.
- W2894590336 isRetracted "false" @default.
- W2894590336 magId "2894590336" @default.
- W2894590336 workType "dissertation" @default.