Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894616724> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2894616724 endingPage "164" @default.
- W2894616724 startingPage "155" @default.
- W2894616724 abstract "Automatic segmentation of liver and tumor plays a crucial role in medical-aided diagnosis. At present, neural networks have been widely used in medical image processing. There are many FCN-based methods used for the automatic segmentation of the liver and the tumor, but results are not precise enough to the details in the images. In this paper, we use cascaded U-Net to segment livers and tumors automatically. The first U-Net is used to segment livers, and the livers are the input of the second U-Net. We perform experiments on the published 3DIRCAD dataset and the dataset provided by medical institutions. Medical institutions provide CT of patients with advanced liver cancer. Compared with FCN, U-Net is more accurate. When the false positive rate is the same, U-Net’s true positive is higher. The accuracy of segmentation of the liver is 91.3 and 89.8%, respectively, and the accuracy of segmentation of the tumor reaches 82.4 and 86.6%." @default.
- W2894616724 created "2018-10-12" @default.
- W2894616724 creator A5019804488 @default.
- W2894616724 creator A5071036184 @default.
- W2894616724 creator A5075201879 @default.
- W2894616724 creator A5082025247 @default.
- W2894616724 date "2018-10-04" @default.
- W2894616724 modified "2023-10-17" @default.
- W2894616724 title "Automatic Liver and Tumor Segmentation of CT Based on Cascaded U-Net" @default.
- W2894616724 cites W1884191083 @default.
- W2894616724 cites W1893585201 @default.
- W2894616724 cites W1903029394 @default.
- W2894616724 cites W2115368667 @default.
- W2894616724 cites W2135645150 @default.
- W2894616724 cites W2175951243 @default.
- W2894616724 cites W2301358467 @default.
- W2894616724 cites W2464708700 @default.
- W2894616724 cites W2522861252 @default.
- W2894616724 cites W2962914239 @default.
- W2894616724 doi "https://doi.org/10.1007/978-981-13-2291-4_16" @default.
- W2894616724 hasPublicationYear "2018" @default.
- W2894616724 type Work @default.
- W2894616724 sameAs 2894616724 @default.
- W2894616724 citedByCount "10" @default.
- W2894616724 countsByYear W28946167242020 @default.
- W2894616724 countsByYear W28946167242021 @default.
- W2894616724 countsByYear W28946167242022 @default.
- W2894616724 countsByYear W28946167242023 @default.
- W2894616724 crossrefType "book-chapter" @default.
- W2894616724 hasAuthorship W2894616724A5019804488 @default.
- W2894616724 hasAuthorship W2894616724A5071036184 @default.
- W2894616724 hasAuthorship W2894616724A5075201879 @default.
- W2894616724 hasAuthorship W2894616724A5082025247 @default.
- W2894616724 hasConcept C121608353 @default.
- W2894616724 hasConcept C124504099 @default.
- W2894616724 hasConcept C126322002 @default.
- W2894616724 hasConcept C14166107 @default.
- W2894616724 hasConcept C153180895 @default.
- W2894616724 hasConcept C154945302 @default.
- W2894616724 hasConcept C2524010 @default.
- W2894616724 hasConcept C2776231280 @default.
- W2894616724 hasConcept C2776964913 @default.
- W2894616724 hasConcept C2778019345 @default.
- W2894616724 hasConcept C31972630 @default.
- W2894616724 hasConcept C33923547 @default.
- W2894616724 hasConcept C41008148 @default.
- W2894616724 hasConcept C71924100 @default.
- W2894616724 hasConcept C89600930 @default.
- W2894616724 hasConceptScore W2894616724C121608353 @default.
- W2894616724 hasConceptScore W2894616724C124504099 @default.
- W2894616724 hasConceptScore W2894616724C126322002 @default.
- W2894616724 hasConceptScore W2894616724C14166107 @default.
- W2894616724 hasConceptScore W2894616724C153180895 @default.
- W2894616724 hasConceptScore W2894616724C154945302 @default.
- W2894616724 hasConceptScore W2894616724C2524010 @default.
- W2894616724 hasConceptScore W2894616724C2776231280 @default.
- W2894616724 hasConceptScore W2894616724C2776964913 @default.
- W2894616724 hasConceptScore W2894616724C2778019345 @default.
- W2894616724 hasConceptScore W2894616724C31972630 @default.
- W2894616724 hasConceptScore W2894616724C33923547 @default.
- W2894616724 hasConceptScore W2894616724C41008148 @default.
- W2894616724 hasConceptScore W2894616724C71924100 @default.
- W2894616724 hasConceptScore W2894616724C89600930 @default.
- W2894616724 hasLocation W28946167241 @default.
- W2894616724 hasOpenAccess W2894616724 @default.
- W2894616724 hasPrimaryLocation W28946167241 @default.
- W2894616724 hasRelatedWork W1507687735 @default.
- W2894616724 hasRelatedWork W2122022336 @default.
- W2894616724 hasRelatedWork W2344532017 @default.
- W2894616724 hasRelatedWork W2415731916 @default.
- W2894616724 hasRelatedWork W2770655971 @default.
- W2894616724 hasRelatedWork W2897195263 @default.
- W2894616724 hasRelatedWork W3006461809 @default.
- W2894616724 hasRelatedWork W3194874227 @default.
- W2894616724 hasRelatedWork W3201304295 @default.
- W2894616724 hasRelatedWork W4214547365 @default.
- W2894616724 isParatext "false" @default.
- W2894616724 isRetracted "false" @default.
- W2894616724 magId "2894616724" @default.
- W2894616724 workType "book-chapter" @default.