Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894617284> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2894617284 endingPage "e92" @default.
- W2894617284 startingPage "e91" @default.
- W2894617284 abstract "To the Editor The authors commend Fischer et al1 on their article in the June issue of Anesthesia & Analgesia. Informed decision making regarding patient treatment demands an understanding of causal mechanisms. Laboratory-based causal mechanistic research is based on experimentation, hence the importance of preclinical tools for this type of research. Preclinical studies are usually based on either in vitro or in vivo models. In in vitro models, systemic influences are neutralized, allowing study of the direct effect of drugs on the relevant tissue. However, in vivo studies are required to translate isolated tissue study results into clinical significance. Then again, there is overall consensus that the use of animals in preclinical trials must be reduced for both ethical and financial reasons. Moreover, in the last decade, clinical research funding is floundering.2 This setting makes the findings of Fischer et al1 more than exciting. Their findings support prior studies pointing to a possible contribution of inhaled anesthetic agents to ongoing cellular damage after traumatic brain injury (TBI). But more importantly, their model opens a new era in laboratory research of TBI. The Drosophila fly may prove to be the affordable, much-needed bridge between in vivo and in vitro studies of human TBI. Inhaled anesthetic agents exert multiple cellular-level effects. It remains unclear which of these agents translate into systemic effects. More importantly, the biological effects of anesthetics are context specific; seemingly indistinguishable cellular-level biological effects may be either protective or harmful. Drosophila flies are ubiquitous, with >1500 species existing worldwide. Some species of Drosophila are difficult to culture in the laboratory, but many species are easily induced to breed and may produce multiple offspring. These species also are simple to cultivate in the laboratory; they are relatively robust and have undemanding nutrition requirements. Some universities maintain cultures of tens to hundreds of Drosophila species for research purposes. Drosophila flies have been used in genetic experiments since the early 1900s; they have only 4 pairs of chromosomes and many simple mutations.3 They are also commonly used in studies of embryogenesis, aging, and the microbiome. The 1 caveat to the model described by Fischer et al1 is that the injured flies may have experienced blunt forces not only to the head. However, given the initial recuperation described after injury, death in this model is more likely to stem from the effects of anesthetics than from other organ damage. Most clinicians would perceive the differences between flies and humans as insurmountable disadvantages for laboratory modeling purposes. Flies have no lungs, no “blood pressure,” and no adaptive immune system, but they do have a brain. Just as genetic studies were simplified by use of the Drosophila fly, this simple brain may also allow research into the core biological effects of anesthetics encumbered by their accompanying systemic effects (eg, intracranial pressure regulation). We therefore salute Fischer et al1 for ushering in a new era in which Drosophila flies will also play a role in our understanding of TBI in humans. Sharon Einav, MSc, MDShaare Zedek Medical CenterHebrew University-Hadassah Faculty of MedicineEin Kerem, Jerusalem, Israel[email protected] Alexander Zlotnik, MD, PhDDepartment of Anaesthesiology and Critical CareSoroka University Medical Center Faculty of Health ScienceBen-Gurion University of the NegevBeersheba, Israel" @default.
- W2894617284 created "2018-10-12" @default.
- W2894617284 creator A5052353952 @default.
- W2894617284 creator A5055004806 @default.
- W2894617284 date "2018-11-01" @default.
- W2894617284 modified "2023-10-17" @default.
- W2894617284 title "Of Flies and Men" @default.
- W2894617284 cites W2102088568 @default.
- W2894617284 cites W2794648809 @default.
- W2894617284 cites W4229565668 @default.
- W2894617284 doi "https://doi.org/10.1213/ane.0000000000003768" @default.
- W2894617284 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30234535" @default.
- W2894617284 hasPublicationYear "2018" @default.
- W2894617284 type Work @default.
- W2894617284 sameAs 2894617284 @default.
- W2894617284 citedByCount "1" @default.
- W2894617284 countsByYear W28946172842018 @default.
- W2894617284 crossrefType "journal-article" @default.
- W2894617284 hasAuthorship W2894617284A5052353952 @default.
- W2894617284 hasAuthorship W2894617284A5055004806 @default.
- W2894617284 hasConcept C126322002 @default.
- W2894617284 hasConcept C142724271 @default.
- W2894617284 hasConcept C150903083 @default.
- W2894617284 hasConcept C151730666 @default.
- W2894617284 hasConcept C169760540 @default.
- W2894617284 hasConcept C177713679 @default.
- W2894617284 hasConcept C19527891 @default.
- W2894617284 hasConcept C207001950 @default.
- W2894617284 hasConcept C2779343474 @default.
- W2894617284 hasConcept C2993043200 @default.
- W2894617284 hasConcept C3018263421 @default.
- W2894617284 hasConcept C535046627 @default.
- W2894617284 hasConcept C60644358 @default.
- W2894617284 hasConcept C71924100 @default.
- W2894617284 hasConcept C86803240 @default.
- W2894617284 hasConcept C98274493 @default.
- W2894617284 hasConceptScore W2894617284C126322002 @default.
- W2894617284 hasConceptScore W2894617284C142724271 @default.
- W2894617284 hasConceptScore W2894617284C150903083 @default.
- W2894617284 hasConceptScore W2894617284C151730666 @default.
- W2894617284 hasConceptScore W2894617284C169760540 @default.
- W2894617284 hasConceptScore W2894617284C177713679 @default.
- W2894617284 hasConceptScore W2894617284C19527891 @default.
- W2894617284 hasConceptScore W2894617284C207001950 @default.
- W2894617284 hasConceptScore W2894617284C2779343474 @default.
- W2894617284 hasConceptScore W2894617284C2993043200 @default.
- W2894617284 hasConceptScore W2894617284C3018263421 @default.
- W2894617284 hasConceptScore W2894617284C535046627 @default.
- W2894617284 hasConceptScore W2894617284C60644358 @default.
- W2894617284 hasConceptScore W2894617284C71924100 @default.
- W2894617284 hasConceptScore W2894617284C86803240 @default.
- W2894617284 hasConceptScore W2894617284C98274493 @default.
- W2894617284 hasIssue "5" @default.
- W2894617284 hasLocation W28946172841 @default.
- W2894617284 hasLocation W28946172842 @default.
- W2894617284 hasOpenAccess W2894617284 @default.
- W2894617284 hasPrimaryLocation W28946172841 @default.
- W2894617284 hasRelatedWork W2205764851 @default.
- W2894617284 hasRelatedWork W2397757704 @default.
- W2894617284 hasRelatedWork W2507323119 @default.
- W2894617284 hasRelatedWork W2803310548 @default.
- W2894617284 hasRelatedWork W2886928388 @default.
- W2894617284 hasRelatedWork W2892293392 @default.
- W2894617284 hasRelatedWork W2905028230 @default.
- W2894617284 hasRelatedWork W2922220912 @default.
- W2894617284 hasRelatedWork W4252371801 @default.
- W2894617284 hasRelatedWork W4296392006 @default.
- W2894617284 hasVolume "127" @default.
- W2894617284 isParatext "false" @default.
- W2894617284 isRetracted "false" @default.
- W2894617284 magId "2894617284" @default.
- W2894617284 workType "article" @default.