Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894637616> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2894637616 abstract "Parkinson’s disease (PD) is the second most common age related neurodegenerative disorder, affecting approximately 1-2% of the elderly population. Freezing of Gait (FOG) is a very disabling feature of PD that causes frequent falls. During FOG, patients are suddenly unable to take a step despite the intention to walk or continue moving forward. The neural mechanisms of FOG are unclear and treatments have only limited effectiveness.Based on contexts of behavioural measures in daily life, different types of FOG have been observed including: freezing when turning (TF); freezing when getting through narrow doorways; freezing when reaching a target; freezing when straight walking or freezing when initiating gait to start a movement (GIF). TF and GIF are recognized to be the most frequent triggers of FOG seen in PD patients.To detect FOG, using parameters extracted from the Electroencephalogram (EEG) is one of the most promising methods. In the comparison of using “body-worn” sensors technique, EEG measures the activity of the brain where the root of FOG is occurring. Therefore, EEG will be quicker to detect FOG than “body-worn” sensors because of the time the neural signal has to travel all the way to the legs to be measured, thus offering the most optimal time window for intervention to overcome FOG.The research in this thesis introduces advanced algorithms for FOG detection using EEG signals. These algorithms have been developed and applied successfully to detect FOG and its two common subtypes (GIF, TF) based on various features extractions and classifiers, providing high accuracy for detection. It was found that the combination of Independent Component Analysis Entropy Boundary Minimization (ICA-EBM), S-Transform (ST) and Bayesian Neural Networks (BNN) proved to be a very robust and effective method for freezing detection.In the first study, abnormal changes of EEG signal to detect FOG were investigated. By using Fast Fourier Transform as the feature extraction and Artificial Neural Networks (ANN) as a classifier, the EEG data of FOG could be detected effectively from seven PD patients with sensitivity, specificity and accuracy of 72.20%, 70.58% and 71.46%, respectively. Furthermore, FOG episodes were found to be associated with significant increases in the high beta band (21-38Hz) across the central, frontal, occipital and parietal EEG sites.In the second study, the dynamic brain changes underlying a GIF episode and its detection were investigated in four PD patients. This research studied the brain activity underlying GIF by analyzing Wavelet Transform (WT) of EEG signals. Using ICA-EBM for EEG source separation, WT for feature extraction and Support Vector Machine (SVM) for classification, the correct identification of GIF episodes was improved with sensitivity, specificity, and accuracy of 83.94%, 89.39% and 86.67%, respectively.The final classification results produced by this dissertation indicated that by applying source separation ICA-EBM for pre-processing EEG data, time-frequency ST techniques for…" @default.
- W2894637616 created "2018-10-12" @default.
- W2894637616 creator A5042401960 @default.
- W2894637616 date "2017-01-01" @default.
- W2894637616 modified "2023-09-23" @default.
- W2894637616 title "Detection of freezing of gait and gait initiation failure in people with Parkinson's disease using electroencephalogram signals" @default.
- W2894637616 hasPublicationYear "2017" @default.
- W2894637616 type Work @default.
- W2894637616 sameAs 2894637616 @default.
- W2894637616 citedByCount "0" @default.
- W2894637616 crossrefType "dissertation" @default.
- W2894637616 hasAuthorship W2894637616A5042401960 @default.
- W2894637616 hasConcept C138885662 @default.
- W2894637616 hasConcept C142724271 @default.
- W2894637616 hasConcept C151800584 @default.
- W2894637616 hasConcept C154945302 @default.
- W2894637616 hasConcept C15744967 @default.
- W2894637616 hasConcept C169760540 @default.
- W2894637616 hasConcept C2776401178 @default.
- W2894637616 hasConcept C2779134260 @default.
- W2894637616 hasConcept C2779734285 @default.
- W2894637616 hasConcept C2908647359 @default.
- W2894637616 hasConcept C41008148 @default.
- W2894637616 hasConcept C41895202 @default.
- W2894637616 hasConcept C522805319 @default.
- W2894637616 hasConcept C71924100 @default.
- W2894637616 hasConcept C99454951 @default.
- W2894637616 hasConcept C99508421 @default.
- W2894637616 hasConceptScore W2894637616C138885662 @default.
- W2894637616 hasConceptScore W2894637616C142724271 @default.
- W2894637616 hasConceptScore W2894637616C151800584 @default.
- W2894637616 hasConceptScore W2894637616C154945302 @default.
- W2894637616 hasConceptScore W2894637616C15744967 @default.
- W2894637616 hasConceptScore W2894637616C169760540 @default.
- W2894637616 hasConceptScore W2894637616C2776401178 @default.
- W2894637616 hasConceptScore W2894637616C2779134260 @default.
- W2894637616 hasConceptScore W2894637616C2779734285 @default.
- W2894637616 hasConceptScore W2894637616C2908647359 @default.
- W2894637616 hasConceptScore W2894637616C41008148 @default.
- W2894637616 hasConceptScore W2894637616C41895202 @default.
- W2894637616 hasConceptScore W2894637616C522805319 @default.
- W2894637616 hasConceptScore W2894637616C71924100 @default.
- W2894637616 hasConceptScore W2894637616C99454951 @default.
- W2894637616 hasConceptScore W2894637616C99508421 @default.
- W2894637616 hasLocation W28946376161 @default.
- W2894637616 hasOpenAccess W2894637616 @default.
- W2894637616 hasPrimaryLocation W28946376161 @default.
- W2894637616 hasRelatedWork W2023507165 @default.
- W2894637616 hasRelatedWork W2079859083 @default.
- W2894637616 hasRelatedWork W2189059260 @default.
- W2894637616 hasRelatedWork W2317155192 @default.
- W2894637616 hasRelatedWork W2319755970 @default.
- W2894637616 hasRelatedWork W2533009743 @default.
- W2894637616 hasRelatedWork W2746099247 @default.
- W2894637616 hasRelatedWork W2754043702 @default.
- W2894637616 hasRelatedWork W2804096145 @default.
- W2894637616 hasRelatedWork W2805212519 @default.
- W2894637616 hasRelatedWork W2969265368 @default.
- W2894637616 hasRelatedWork W3003746036 @default.
- W2894637616 hasRelatedWork W3007566027 @default.
- W2894637616 hasRelatedWork W3011654399 @default.
- W2894637616 hasRelatedWork W3016140032 @default.
- W2894637616 hasRelatedWork W3016642122 @default.
- W2894637616 hasRelatedWork W3043250973 @default.
- W2894637616 hasRelatedWork W3119307757 @default.
- W2894637616 hasRelatedWork W3128274145 @default.
- W2894637616 hasRelatedWork W3163434915 @default.
- W2894637616 isParatext "false" @default.
- W2894637616 isRetracted "false" @default.
- W2894637616 magId "2894637616" @default.
- W2894637616 workType "dissertation" @default.