Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894639457> ?p ?o ?g. }
- W2894639457 endingPage "1501" @default.
- W2894639457 startingPage "1490" @default.
- W2894639457 abstract "Aiming at objectively measuring the realism of virtual traffic flows and evaluating the effectiveness of different traffic simulation techniques, this paper introduces a general, dictionary-based learning method to evaluate the fidelity of any traffic trajectory data. First, a traffic pattern dictionary that characterizes common patterns of real-world traffic behavior is built offline from pre-collected ground truth traffic data. The corresponding learning error is set as the benchmark of the dictionary-based traffic representation. With the aid of the constructed dictionary, the realism of input simulated traffic flow data can be evaluated by comparing its dictionary-based reconstruction error with the dictionary error benchmark. This evaluation metric can be robustly applied to any simulated traffic flow data; in other words, it is independent of how the traffic data are generated. We demonstrated the effectiveness and robustness of this metric through many experiments on real-world traffic data and various simulated traffic data, comparisons with the state-of-the-art entropy-based similarity metric for aggregate crowd motions, and perceptual evaluation studies." @default.
- W2894639457 created "2018-10-12" @default.
- W2894639457 creator A5005069138 @default.
- W2894639457 creator A5015279307 @default.
- W2894639457 creator A5026683388 @default.
- W2894639457 creator A5073236206 @default.
- W2894639457 creator A5080566166 @default.
- W2894639457 creator A5086872926 @default.
- W2894639457 date "2020-03-01" @default.
- W2894639457 modified "2023-10-17" @default.
- W2894639457 title "Dictionary-based Fidelity Measure for Virtual Traffic" @default.
- W2894639457 cites W1488202234 @default.
- W2894639457 cites W1633849680 @default.
- W2894639457 cites W1920940135 @default.
- W2894639457 cites W1965578057 @default.
- W2894639457 cites W1968719911 @default.
- W2894639457 cites W1976644141 @default.
- W2894639457 cites W1988500921 @default.
- W2894639457 cites W1989305290 @default.
- W2894639457 cites W1990131206 @default.
- W2894639457 cites W2019530605 @default.
- W2894639457 cites W2028331920 @default.
- W2894639457 cites W2029465969 @default.
- W2894639457 cites W2030383259 @default.
- W2894639457 cites W2034818024 @default.
- W2894639457 cites W2043193462 @default.
- W2894639457 cites W2045079989 @default.
- W2894639457 cites W2052509228 @default.
- W2894639457 cites W2052818671 @default.
- W2894639457 cites W2053830369 @default.
- W2894639457 cites W2056877664 @default.
- W2894639457 cites W2062102668 @default.
- W2894639457 cites W2063978378 @default.
- W2894639457 cites W2070505525 @default.
- W2894639457 cites W2085842743 @default.
- W2894639457 cites W2087736388 @default.
- W2894639457 cites W2104600118 @default.
- W2894639457 cites W2106579908 @default.
- W2894639457 cites W2115429828 @default.
- W2894639457 cites W2129746290 @default.
- W2894639457 cites W2130448123 @default.
- W2894639457 cites W2135046866 @default.
- W2894639457 cites W2147948938 @default.
- W2894639457 cites W2153663612 @default.
- W2894639457 cites W2160547390 @default.
- W2894639457 cites W2165585517 @default.
- W2894639457 cites W2167153731 @default.
- W2894639457 cites W2168668658 @default.
- W2894639457 cites W2169484022 @default.
- W2894639457 cites W2321278394 @default.
- W2894639457 cites W2396118456 @default.
- W2894639457 cites W2562279826 @default.
- W2894639457 cites W2577894039 @default.
- W2894639457 cites W2771027356 @default.
- W2894639457 cites W2783963507 @default.
- W2894639457 cites W3005392566 @default.
- W2894639457 cites W4255056845 @default.
- W2894639457 doi "https://doi.org/10.1109/tvcg.2018.2873695" @default.
- W2894639457 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30295621" @default.
- W2894639457 hasPublicationYear "2020" @default.
- W2894639457 type Work @default.
- W2894639457 sameAs 2894639457 @default.
- W2894639457 citedByCount "2" @default.
- W2894639457 countsByYear W28946394572022 @default.
- W2894639457 crossrefType "journal-article" @default.
- W2894639457 hasAuthorship W2894639457A5005069138 @default.
- W2894639457 hasAuthorship W2894639457A5015279307 @default.
- W2894639457 hasAuthorship W2894639457A5026683388 @default.
- W2894639457 hasAuthorship W2894639457A5073236206 @default.
- W2894639457 hasAuthorship W2894639457A5080566166 @default.
- W2894639457 hasAuthorship W2894639457A5086872926 @default.
- W2894639457 hasConcept C104317684 @default.
- W2894639457 hasConcept C119857082 @default.
- W2894639457 hasConcept C124101348 @default.
- W2894639457 hasConcept C13280743 @default.
- W2894639457 hasConcept C146849305 @default.
- W2894639457 hasConcept C154945302 @default.
- W2894639457 hasConcept C162324750 @default.
- W2894639457 hasConcept C176217482 @default.
- W2894639457 hasConcept C185592680 @default.
- W2894639457 hasConcept C185798385 @default.
- W2894639457 hasConcept C205649164 @default.
- W2894639457 hasConcept C21547014 @default.
- W2894639457 hasConcept C2776459999 @default.
- W2894639457 hasConcept C41008148 @default.
- W2894639457 hasConcept C55493867 @default.
- W2894639457 hasConcept C63479239 @default.
- W2894639457 hasConcept C76155785 @default.
- W2894639457 hasConceptScore W2894639457C104317684 @default.
- W2894639457 hasConceptScore W2894639457C119857082 @default.
- W2894639457 hasConceptScore W2894639457C124101348 @default.
- W2894639457 hasConceptScore W2894639457C13280743 @default.
- W2894639457 hasConceptScore W2894639457C146849305 @default.
- W2894639457 hasConceptScore W2894639457C154945302 @default.
- W2894639457 hasConceptScore W2894639457C162324750 @default.
- W2894639457 hasConceptScore W2894639457C176217482 @default.
- W2894639457 hasConceptScore W2894639457C185592680 @default.
- W2894639457 hasConceptScore W2894639457C185798385 @default.