Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894710132> ?p ?o ?g. }
- W2894710132 endingPage "932" @default.
- W2894710132 startingPage "921" @default.
- W2894710132 abstract "Abstract Travel time prediction supplies data support for the management and operation of the highway network. To deal with this problem, a model based on ensemble empirical mode decomposition and random vector functional link network is proposed in this paper. Ensemble empirical mode decomposition is firstly employed to decompose the complex travel time data series into several simple functions, which are then represented by the same number of random vector functional link networks. Finally, the outputs of all networks are combined by linear addition as the prediction results. A historical travel time data series (from 1 August 2016 to 1 November 2016) of two highways in China is investigated by the proposed models. For comparison, five individual prediction models and their respective ensemble variants are implemented for the same task. The results show that the proposed model outperforms all the other models in terms of symmetric mean absolute percentage error and normalized root mean square error. As for computational speed, the proposed model ranks the first among all the ensemble models. Moreover, the ensemble empirical mode decomposition is better than the empirical mode decomposition. The Friedman statistical test also confirms the results of the comparison. Experimental results reveal that the proposed model reaches the best overall performance and is a very promising model for complex travel time prediction." @default.
- W2894710132 created "2018-10-12" @default.
- W2894710132 creator A5033108732 @default.
- W2894710132 creator A5038861435 @default.
- W2894710132 creator A5057209439 @default.
- W2894710132 creator A5060394098 @default.
- W2894710132 creator A5079789406 @default.
- W2894710132 date "2018-12-01" @default.
- W2894710132 modified "2023-09-22" @default.
- W2894710132 title "Travel time prediction for highway network based on the ensemble empirical mode decomposition and random vector functional link network" @default.
- W2894710132 cites W1967444754 @default.
- W2894710132 cites W1973943669 @default.
- W2894710132 cites W1977619318 @default.
- W2894710132 cites W1982978808 @default.
- W2894710132 cites W1987916558 @default.
- W2894710132 cites W1995789178 @default.
- W2894710132 cites W1996640396 @default.
- W2894710132 cites W2007422655 @default.
- W2894710132 cites W2018175660 @default.
- W2894710132 cites W2019191255 @default.
- W2894710132 cites W2023961611 @default.
- W2894710132 cites W2031069824 @default.
- W2894710132 cites W2040297119 @default.
- W2894710132 cites W2047493229 @default.
- W2894710132 cites W2049952439 @default.
- W2894710132 cites W2077537883 @default.
- W2894710132 cites W2079031611 @default.
- W2894710132 cites W2083238230 @default.
- W2894710132 cites W2106100548 @default.
- W2894710132 cites W2109177467 @default.
- W2894710132 cites W2120390927 @default.
- W2894710132 cites W2125817951 @default.
- W2894710132 cites W2127012233 @default.
- W2894710132 cites W2135506649 @default.
- W2894710132 cites W2141948130 @default.
- W2894710132 cites W2160507653 @default.
- W2894710132 cites W2171234954 @default.
- W2894710132 cites W2229668941 @default.
- W2894710132 cites W2286961399 @default.
- W2894710132 cites W2342643507 @default.
- W2894710132 cites W2343970958 @default.
- W2894710132 cites W2432465520 @default.
- W2894710132 cites W2525614189 @default.
- W2894710132 cites W2583110309 @default.
- W2894710132 cites W2604862142 @default.
- W2894710132 cites W2752122793 @default.
- W2894710132 cites W2762341992 @default.
- W2894710132 cites W2768134894 @default.
- W2894710132 cites W2792578766 @default.
- W2894710132 cites W4246587917 @default.
- W2894710132 cites W94052953 @default.
- W2894710132 doi "https://doi.org/10.1016/j.asoc.2018.09.023" @default.
- W2894710132 hasPublicationYear "2018" @default.
- W2894710132 type Work @default.
- W2894710132 sameAs 2894710132 @default.
- W2894710132 citedByCount "38" @default.
- W2894710132 countsByYear W28947101322019 @default.
- W2894710132 countsByYear W28947101322020 @default.
- W2894710132 countsByYear W28947101322021 @default.
- W2894710132 countsByYear W28947101322022 @default.
- W2894710132 countsByYear W28947101322023 @default.
- W2894710132 crossrefType "journal-article" @default.
- W2894710132 hasAuthorship W2894710132A5033108732 @default.
- W2894710132 hasAuthorship W2894710132A5038861435 @default.
- W2894710132 hasAuthorship W2894710132A5057209439 @default.
- W2894710132 hasAuthorship W2894710132A5060394098 @default.
- W2894710132 hasAuthorship W2894710132A5079789406 @default.
- W2894710132 hasConcept C111919701 @default.
- W2894710132 hasConcept C112633086 @default.
- W2894710132 hasConcept C12267149 @default.
- W2894710132 hasConcept C124101348 @default.
- W2894710132 hasConcept C124681953 @default.
- W2894710132 hasConcept C154945302 @default.
- W2894710132 hasConcept C18903297 @default.
- W2894710132 hasConcept C25570617 @default.
- W2894710132 hasConcept C2778753846 @default.
- W2894710132 hasConcept C31258907 @default.
- W2894710132 hasConcept C41008148 @default.
- W2894710132 hasConcept C48677424 @default.
- W2894710132 hasConcept C76155785 @default.
- W2894710132 hasConcept C86803240 @default.
- W2894710132 hasConceptScore W2894710132C111919701 @default.
- W2894710132 hasConceptScore W2894710132C112633086 @default.
- W2894710132 hasConceptScore W2894710132C12267149 @default.
- W2894710132 hasConceptScore W2894710132C124101348 @default.
- W2894710132 hasConceptScore W2894710132C124681953 @default.
- W2894710132 hasConceptScore W2894710132C154945302 @default.
- W2894710132 hasConceptScore W2894710132C18903297 @default.
- W2894710132 hasConceptScore W2894710132C25570617 @default.
- W2894710132 hasConceptScore W2894710132C2778753846 @default.
- W2894710132 hasConceptScore W2894710132C31258907 @default.
- W2894710132 hasConceptScore W2894710132C41008148 @default.
- W2894710132 hasConceptScore W2894710132C48677424 @default.
- W2894710132 hasConceptScore W2894710132C76155785 @default.
- W2894710132 hasConceptScore W2894710132C86803240 @default.
- W2894710132 hasFunder F4320321001 @default.
- W2894710132 hasFunder F4320322769 @default.
- W2894710132 hasFunder F4320322925 @default.