Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894713624> ?p ?o ?g. }
- W2894713624 endingPage "533" @default.
- W2894713624 startingPage "522" @default.
- W2894713624 abstract "In this paper, we introduce a new method for the segmentation of bacterial colonies in solid agar plate images. The proposed approach comprises two contributions. First, a simple but nonetheless effective engine is devised to generate synthetic plate images. This engine overlays bacterial colony patches to existing background images, taking into account both the local appearance of the background and the intrinsic opacity of the bacterial colonies. Therefore, a scalable alternative to the human ground–truth supervision—often difficult to obtain in medical imaging, due to privacy issues and scarcity of data—is provided. Then, synthetic generated data, together with few annotated images, were used to train a Fully–Convolutional Network. Such network is actually effective in separating bacterial colonies from the background. Finally, we discuss the role of the generation of synthetic images, conducting experiments that show how their inclusion improves the performances of the segmentation network, producing very encouraging results." @default.
- W2894713624 created "2018-10-12" @default.
- W2894713624 creator A5020560480 @default.
- W2894713624 creator A5028718577 @default.
- W2894713624 creator A5069530444 @default.
- W2894713624 creator A5075460687 @default.
- W2894713624 creator A5091787895 @default.
- W2894713624 date "2018-01-01" @default.
- W2894713624 modified "2023-09-27" @default.
- W2894713624 title "A Deep Learning Approach to Bacterial Colony Segmentation" @default.
- W2894713624 cites W1105725539 @default.
- W2894713624 cites W1861492603 @default.
- W2894713624 cites W1901129140 @default.
- W2894713624 cites W1906638304 @default.
- W2894713624 cites W1922126009 @default.
- W2894713624 cites W1945811542 @default.
- W2894713624 cites W1985311258 @default.
- W2894713624 cites W2008255403 @default.
- W2894713624 cites W2037227137 @default.
- W2894713624 cites W2043182757 @default.
- W2894713624 cites W2072383593 @default.
- W2894713624 cites W2078592053 @default.
- W2894713624 cites W2102605133 @default.
- W2894713624 cites W2108598243 @default.
- W2894713624 cites W2121296593 @default.
- W2894713624 cites W2153062878 @default.
- W2894713624 cites W2194775991 @default.
- W2894713624 cites W2203820691 @default.
- W2894713624 cites W2206492862 @default.
- W2894713624 cites W2329132828 @default.
- W2894713624 cites W2343052201 @default.
- W2894713624 cites W2344215749 @default.
- W2894713624 cites W2395611524 @default.
- W2894713624 cites W2431874326 @default.
- W2894713624 cites W2467496703 @default.
- W2894713624 cites W2487365028 @default.
- W2894713624 cites W2560023338 @default.
- W2894713624 cites W2586663177 @default.
- W2894713624 cites W2775842006 @default.
- W2894713624 cites W2805277994 @default.
- W2894713624 doi "https://doi.org/10.1007/978-3-030-01424-7_51" @default.
- W2894713624 hasPublicationYear "2018" @default.
- W2894713624 type Work @default.
- W2894713624 sameAs 2894713624 @default.
- W2894713624 citedByCount "15" @default.
- W2894713624 countsByYear W28947136242019 @default.
- W2894713624 countsByYear W28947136242020 @default.
- W2894713624 countsByYear W28947136242021 @default.
- W2894713624 countsByYear W28947136242022 @default.
- W2894713624 countsByYear W28947136242023 @default.
- W2894713624 crossrefType "book-chapter" @default.
- W2894713624 hasAuthorship W2894713624A5020560480 @default.
- W2894713624 hasAuthorship W2894713624A5028718577 @default.
- W2894713624 hasAuthorship W2894713624A5069530444 @default.
- W2894713624 hasAuthorship W2894713624A5075460687 @default.
- W2894713624 hasAuthorship W2894713624A5091787895 @default.
- W2894713624 hasConcept C120665830 @default.
- W2894713624 hasConcept C121332964 @default.
- W2894713624 hasConcept C146849305 @default.
- W2894713624 hasConcept C153180895 @default.
- W2894713624 hasConcept C154945302 @default.
- W2894713624 hasConcept C160920958 @default.
- W2894713624 hasConcept C2994463342 @default.
- W2894713624 hasConcept C31972630 @default.
- W2894713624 hasConcept C41008148 @default.
- W2894713624 hasConcept C48044578 @default.
- W2894713624 hasConcept C523546767 @default.
- W2894713624 hasConcept C54355233 @default.
- W2894713624 hasConcept C60056205 @default.
- W2894713624 hasConcept C77088390 @default.
- W2894713624 hasConcept C86803240 @default.
- W2894713624 hasConcept C89600930 @default.
- W2894713624 hasConceptScore W2894713624C120665830 @default.
- W2894713624 hasConceptScore W2894713624C121332964 @default.
- W2894713624 hasConceptScore W2894713624C146849305 @default.
- W2894713624 hasConceptScore W2894713624C153180895 @default.
- W2894713624 hasConceptScore W2894713624C154945302 @default.
- W2894713624 hasConceptScore W2894713624C160920958 @default.
- W2894713624 hasConceptScore W2894713624C2994463342 @default.
- W2894713624 hasConceptScore W2894713624C31972630 @default.
- W2894713624 hasConceptScore W2894713624C41008148 @default.
- W2894713624 hasConceptScore W2894713624C48044578 @default.
- W2894713624 hasConceptScore W2894713624C523546767 @default.
- W2894713624 hasConceptScore W2894713624C54355233 @default.
- W2894713624 hasConceptScore W2894713624C60056205 @default.
- W2894713624 hasConceptScore W2894713624C77088390 @default.
- W2894713624 hasConceptScore W2894713624C86803240 @default.
- W2894713624 hasConceptScore W2894713624C89600930 @default.
- W2894713624 hasLocation W28947136241 @default.
- W2894713624 hasOpenAccess W2894713624 @default.
- W2894713624 hasPrimaryLocation W28947136241 @default.
- W2894713624 hasRelatedWork W144883078 @default.
- W2894713624 hasRelatedWork W1669643531 @default.
- W2894713624 hasRelatedWork W2005437358 @default.
- W2894713624 hasRelatedWork W2008656436 @default.
- W2894713624 hasRelatedWork W2019566805 @default.
- W2894713624 hasRelatedWork W2039154422 @default.
- W2894713624 hasRelatedWork W2122581818 @default.