Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894716710> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2894716710 endingPage "3312" @default.
- W2894716710 startingPage "3312" @default.
- W2894716710 abstract "Bearings are critical parts of rotating machines, making bearing fault diagnosis based on signals a research hotspot through the ages. In real application scenarios, bearing signals are normally non-linear and unstable, and thus difficult to analyze in the time or frequency domain only. Meanwhile, fault feature vectors extracted conventionally with fixed dimensions may cause insufficiency or redundancy of diagnostic information and result in poor diagnostic performance. In this paper, Self-adaptive Spectrum Analysis (SSA) and a SSA-based diagnosis framework are proposed to solve these problems. Firstly, signals are decomposed into components with better analyzability. Then, SSA is developed to extract fault features adaptively and construct non-fixed dimension feature vectors. Finally, Support Vector Machine (SVM) is applied to classify different fault features. Data collected under different working conditions are selected for experiments. Results show that the diagnosis method based on the proposed diagnostic framework has better performance. In conclusion, combined with signal decomposition methods, the SSA method proposed in this paper achieves higher reliability and robustness than other tested feature extraction methods. Simultaneously, the diagnosis methods based on SSA achieve higher accuracy and stability under different working conditions with different sample division schemes." @default.
- W2894716710 created "2018-10-12" @default.
- W2894716710 creator A5008036335 @default.
- W2894716710 creator A5012069375 @default.
- W2894716710 creator A5050342030 @default.
- W2894716710 creator A5051617709 @default.
- W2894716710 date "2018-10-02" @default.
- W2894716710 modified "2023-10-18" @default.
- W2894716710 title "Self-Adaptive Spectrum Analysis Based Bearing Fault Diagnosis" @default.
- W2894716710 cites W2030049536 @default.
- W2894716710 cites W2063291517 @default.
- W2894716710 cites W2140554090 @default.
- W2894716710 cites W2167453047 @default.
- W2894716710 cites W2174317074 @default.
- W2894716710 cites W2615769091 @default.
- W2894716710 cites W2792217752 @default.
- W2894716710 cites W2793343637 @default.
- W2894716710 cites W2802079274 @default.
- W2894716710 doi "https://doi.org/10.3390/s18103312" @default.
- W2894716710 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6211093" @default.
- W2894716710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30279383" @default.
- W2894716710 hasPublicationYear "2018" @default.
- W2894716710 type Work @default.
- W2894716710 sameAs 2894716710 @default.
- W2894716710 citedByCount "10" @default.
- W2894716710 countsByYear W28947167102019 @default.
- W2894716710 countsByYear W28947167102020 @default.
- W2894716710 countsByYear W28947167102021 @default.
- W2894716710 countsByYear W28947167102023 @default.
- W2894716710 crossrefType "journal-article" @default.
- W2894716710 hasAuthorship W2894716710A5008036335 @default.
- W2894716710 hasAuthorship W2894716710A5012069375 @default.
- W2894716710 hasAuthorship W2894716710A5050342030 @default.
- W2894716710 hasAuthorship W2894716710A5051617709 @default.
- W2894716710 hasBestOaLocation W28947167101 @default.
- W2894716710 hasConcept C104317684 @default.
- W2894716710 hasConcept C111919701 @default.
- W2894716710 hasConcept C12267149 @default.
- W2894716710 hasConcept C124101348 @default.
- W2894716710 hasConcept C152124472 @default.
- W2894716710 hasConcept C153180895 @default.
- W2894716710 hasConcept C154945302 @default.
- W2894716710 hasConcept C185592680 @default.
- W2894716710 hasConcept C41008148 @default.
- W2894716710 hasConcept C52622490 @default.
- W2894716710 hasConcept C55493867 @default.
- W2894716710 hasConcept C63479239 @default.
- W2894716710 hasConceptScore W2894716710C104317684 @default.
- W2894716710 hasConceptScore W2894716710C111919701 @default.
- W2894716710 hasConceptScore W2894716710C12267149 @default.
- W2894716710 hasConceptScore W2894716710C124101348 @default.
- W2894716710 hasConceptScore W2894716710C152124472 @default.
- W2894716710 hasConceptScore W2894716710C153180895 @default.
- W2894716710 hasConceptScore W2894716710C154945302 @default.
- W2894716710 hasConceptScore W2894716710C185592680 @default.
- W2894716710 hasConceptScore W2894716710C41008148 @default.
- W2894716710 hasConceptScore W2894716710C52622490 @default.
- W2894716710 hasConceptScore W2894716710C55493867 @default.
- W2894716710 hasConceptScore W2894716710C63479239 @default.
- W2894716710 hasIssue "10" @default.
- W2894716710 hasLocation W28947167101 @default.
- W2894716710 hasLocation W28947167102 @default.
- W2894716710 hasLocation W28947167103 @default.
- W2894716710 hasLocation W28947167104 @default.
- W2894716710 hasLocation W28947167105 @default.
- W2894716710 hasOpenAccess W2894716710 @default.
- W2894716710 hasPrimaryLocation W28947167101 @default.
- W2894716710 hasRelatedWork W148178222 @default.
- W2894716710 hasRelatedWork W1886884218 @default.
- W2894716710 hasRelatedWork W1980100242 @default.
- W2894716710 hasRelatedWork W1996690921 @default.
- W2894716710 hasRelatedWork W2051187167 @default.
- W2894716710 hasRelatedWork W2090763504 @default.
- W2894716710 hasRelatedWork W2104657898 @default.
- W2894716710 hasRelatedWork W2530420969 @default.
- W2894716710 hasRelatedWork W1910826599 @default.
- W2894716710 hasRelatedWork W1948992892 @default.
- W2894716710 hasVolume "18" @default.
- W2894716710 isParatext "false" @default.
- W2894716710 isRetracted "false" @default.
- W2894716710 magId "2894716710" @default.
- W2894716710 workType "article" @default.