Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894718110> ?p ?o ?g. }
- W2894718110 endingPage "1032" @default.
- W2894718110 startingPage "1010" @default.
- W2894718110 abstract "We study how contributors to innovation contests improve their performance through direct experience and by observing others as they synthesize learnable signals from different sources. Our research draws on a 10-year panel of more than 55,000 individuals participating in a firm-hosted online innovation community sponsoring creative t-shirt design contests. Our data set contains almost 180,000 submissions that reflect signals of direct performance evaluation from both the community and the firm. Our data set also contains almost 150 million ratings that reflect signals for learning from observing the completed work of others. We have three key findings. First, we find a period of initial investment with decreased performance. This is because individuals struggle to synthesize learnable signals from early performance evaluation. This finding is contrary to other studies that report faster learning from early direct experience when improvements are easiest to achieve. Second, we find that individuals consistently improve their performance from observing others’ good examples. However, whether they improve from observing others’ bad examples depends on their ability to correctly recognize that work as being of low quality. Third, we find that individuals can successfully integrate signals about what is valued by the firm hosting the community, not just about what is valued by the community. We thus provide important insights into the mechanisms of how individuals learn in crowdsourced innovation and provide important qualifications for the often-heralded theme of “learning from failures.” The online appendix is available at https://doi.org/10.1287/orsc.2018.1219 ." @default.
- W2894718110 created "2018-10-12" @default.
- W2894718110 creator A5055340296 @default.
- W2894718110 creator A5085034251 @default.
- W2894718110 date "2018-12-01" @default.
- W2894718110 modified "2023-10-18" @default.
- W2894718110 title "Learning from Mixed Signals in Online Innovation Communities" @default.
- W2894718110 cites W1562842797 @default.
- W2894718110 cites W1902911321 @default.
- W2894718110 cites W1907282519 @default.
- W2894718110 cites W1963678300 @default.
- W2894718110 cites W1964653832 @default.
- W2894718110 cites W1966544063 @default.
- W2894718110 cites W1973542603 @default.
- W2894718110 cites W1976082614 @default.
- W2894718110 cites W1980952606 @default.
- W2894718110 cites W1981457167 @default.
- W2894718110 cites W1982669030 @default.
- W2894718110 cites W1987832557 @default.
- W2894718110 cites W1988332075 @default.
- W2894718110 cites W1988550741 @default.
- W2894718110 cites W1993865115 @default.
- W2894718110 cites W1995606787 @default.
- W2894718110 cites W2001595458 @default.
- W2894718110 cites W2001905316 @default.
- W2894718110 cites W2009976595 @default.
- W2894718110 cites W2016160438 @default.
- W2894718110 cites W2021171327 @default.
- W2894718110 cites W2028544857 @default.
- W2894718110 cites W2039779207 @default.
- W2894718110 cites W2042445563 @default.
- W2894718110 cites W2059601964 @default.
- W2894718110 cites W2063248556 @default.
- W2894718110 cites W2071517368 @default.
- W2894718110 cites W2074032940 @default.
- W2894718110 cites W2076768992 @default.
- W2894718110 cites W2091616005 @default.
- W2894718110 cites W2092387347 @default.
- W2894718110 cites W2096365673 @default.
- W2894718110 cites W2096547436 @default.
- W2894718110 cites W2104982032 @default.
- W2894718110 cites W2106152741 @default.
- W2894718110 cites W2112034264 @default.
- W2894718110 cites W2112177229 @default.
- W2894718110 cites W2116739230 @default.
- W2894718110 cites W2130736456 @default.
- W2894718110 cites W2131145879 @default.
- W2894718110 cites W2132454116 @default.
- W2894718110 cites W2133026349 @default.
- W2894718110 cites W2134057726 @default.
- W2894718110 cites W2138331717 @default.
- W2894718110 cites W2139860711 @default.
- W2894718110 cites W2140950724 @default.
- W2894718110 cites W2142099443 @default.
- W2894718110 cites W2150587481 @default.
- W2894718110 cites W2152071466 @default.
- W2894718110 cites W2159814266 @default.
- W2894718110 cites W2160021187 @default.
- W2894718110 cites W2161216922 @default.
- W2894718110 cites W2161343059 @default.
- W2894718110 cites W2164233973 @default.
- W2894718110 cites W2164284962 @default.
- W2894718110 cites W2164742765 @default.
- W2894718110 cites W2169593491 @default.
- W2894718110 cites W2178782964 @default.
- W2894718110 cites W2281891097 @default.
- W2894718110 cites W2290149535 @default.
- W2894718110 cites W2474979179 @default.
- W2894718110 cites W2487770199 @default.
- W2894718110 cites W2518876260 @default.
- W2894718110 cites W2534605633 @default.
- W2894718110 cites W2552694111 @default.
- W2894718110 cites W2586769758 @default.
- W2894718110 cites W2919988685 @default.
- W2894718110 cites W3122000667 @default.
- W2894718110 cites W3122992687 @default.
- W2894718110 cites W3123043722 @default.
- W2894718110 cites W3123839549 @default.
- W2894718110 cites W3124560715 @default.
- W2894718110 cites W3124797534 @default.
- W2894718110 cites W3125131044 @default.
- W2894718110 cites W3125502260 @default.
- W2894718110 cites W3125554979 @default.
- W2894718110 cites W3125611213 @default.
- W2894718110 cites W3125833157 @default.
- W2894718110 cites W3125947690 @default.
- W2894718110 cites W4206993414 @default.
- W2894718110 cites W4210702550 @default.
- W2894718110 cites W4230659750 @default.
- W2894718110 cites W4232576752 @default.
- W2894718110 cites W4245961435 @default.
- W2894718110 cites W4251156881 @default.
- W2894718110 cites W4296159956 @default.
- W2894718110 cites W4362228173 @default.
- W2894718110 cites W65801920 @default.
- W2894718110 doi "https://doi.org/10.1287/orsc.2018.1219" @default.
- W2894718110 hasPublicationYear "2018" @default.
- W2894718110 type Work @default.