Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894721641> ?p ?o ?g. }
- W2894721641 endingPage "54" @default.
- W2894721641 startingPage "41" @default.
- W2894721641 abstract "Purpose The purpose of this paper is to accurately capture the risks which are caused by each road user in time. Design/methodology/approach The authors proposed a novel risk assessment approach based on the multi-sensor fusion algorithm in the real traffic environment. Firstly, they proposed a novel detection-level fusion approach for multi-object perception in dense traffic environment based on evidence theory. This approach integrated four states of track life into a generic fusion framework to improve the performance of multi-object perception. The information of object type, position and velocity was accurately obtained. Then, they conducted several experiments in real dense traffic environment on highways and urban roads, which enabled them to propose a novel road traffic risk modeling approach based on the dynamic analysis of vehicles in a variety of driving scenarios. By analyzing the generation process of traffic risks between vehicles and the road environment, the equivalent forces of vehicle–vehicle and vehicle–road were presented and theoretically calculated. The prediction steering angle and trajectory were considered in the determination of traffic risk influence area. Findings The results of multi-object perception in the experiments showed that the proposed fusion approach achieved low false and missing tracking, and the road traffic risk was described as a field of equivalent force. The results extend the understanding of the traffic risk, which supported that the traffic risk from the front and back of the vehicle can be perceived in advance. Originality/value This approach integrated four states of track life into a generic fusion framework to improve the performance of multi-object perception. The information of object type, position and velocity was used to reduce erroneous data association between tracks and detections. Then, the authors conducted several experiments in real dense traffic environment on highways and urban roads, which enabled them to propose a novel road traffic risk modeling approach based on the dynamic analysis of vehicles in a variety of driving scenarios. By analyzing the generation process of traffic risks between vehicles and the road environment, the equivalent forces of vehicle–vehicle and vehicle–road were presented and theoretically calculated." @default.
- W2894721641 created "2018-10-12" @default.
- W2894721641 creator A5013274935 @default.
- W2894721641 creator A5033108732 @default.
- W2894721641 creator A5045468479 @default.
- W2894721641 creator A5060841903 @default.
- W2894721641 date "2018-10-01" @default.
- W2894721641 modified "2023-09-30" @default.
- W2894721641 title "A novel intelligent vehicle risk assessment method combined with multi-sensor fusion in dense traffic environment" @default.
- W2894721641 cites W1992085841 @default.
- W2894721641 cites W2015605078 @default.
- W2894721641 cites W2048196003 @default.
- W2894721641 cites W2051939995 @default.
- W2894721641 cites W2059032873 @default.
- W2894721641 cites W2067007369 @default.
- W2894721641 cites W2070724998 @default.
- W2894721641 cites W2076251539 @default.
- W2894721641 cites W2104092062 @default.
- W2894721641 cites W2105818695 @default.
- W2894721641 cites W2120010140 @default.
- W2894721641 cites W2145129279 @default.
- W2894721641 cites W2166377439 @default.
- W2894721641 cites W2290268423 @default.
- W2894721641 cites W2338831912 @default.
- W2894721641 cites W2341848647 @default.
- W2894721641 cites W2514709622 @default.
- W2894721641 cites W2530088678 @default.
- W2894721641 doi "https://doi.org/10.1108/jicv-02-2018-0004" @default.
- W2894721641 hasPublicationYear "2018" @default.
- W2894721641 type Work @default.
- W2894721641 sameAs 2894721641 @default.
- W2894721641 citedByCount "11" @default.
- W2894721641 countsByYear W28947216412019 @default.
- W2894721641 countsByYear W28947216412020 @default.
- W2894721641 countsByYear W28947216412021 @default.
- W2894721641 countsByYear W28947216412022 @default.
- W2894721641 countsByYear W28947216412023 @default.
- W2894721641 crossrefType "journal-article" @default.
- W2894721641 hasAuthorship W2894721641A5013274935 @default.
- W2894721641 hasAuthorship W2894721641A5033108732 @default.
- W2894721641 hasAuthorship W2894721641A5045468479 @default.
- W2894721641 hasAuthorship W2894721641A5060841903 @default.
- W2894721641 hasBestOaLocation W28947216411 @default.
- W2894721641 hasConcept C10138342 @default.
- W2894721641 hasConcept C111919701 @default.
- W2894721641 hasConcept C121332964 @default.
- W2894721641 hasConcept C124101348 @default.
- W2894721641 hasConcept C127413603 @default.
- W2894721641 hasConcept C1276947 @default.
- W2894721641 hasConcept C13662910 @default.
- W2894721641 hasConcept C162324750 @default.
- W2894721641 hasConcept C198082294 @default.
- W2894721641 hasConcept C22212356 @default.
- W2894721641 hasConcept C2777636896 @default.
- W2894721641 hasConcept C2985695025 @default.
- W2894721641 hasConcept C31972630 @default.
- W2894721641 hasConcept C33954974 @default.
- W2894721641 hasConcept C41008148 @default.
- W2894721641 hasConcept C44154836 @default.
- W2894721641 hasConcept C47796450 @default.
- W2894721641 hasConcept C79403827 @default.
- W2894721641 hasConcept C89992363 @default.
- W2894721641 hasConceptScore W2894721641C10138342 @default.
- W2894721641 hasConceptScore W2894721641C111919701 @default.
- W2894721641 hasConceptScore W2894721641C121332964 @default.
- W2894721641 hasConceptScore W2894721641C124101348 @default.
- W2894721641 hasConceptScore W2894721641C127413603 @default.
- W2894721641 hasConceptScore W2894721641C1276947 @default.
- W2894721641 hasConceptScore W2894721641C13662910 @default.
- W2894721641 hasConceptScore W2894721641C162324750 @default.
- W2894721641 hasConceptScore W2894721641C198082294 @default.
- W2894721641 hasConceptScore W2894721641C22212356 @default.
- W2894721641 hasConceptScore W2894721641C2777636896 @default.
- W2894721641 hasConceptScore W2894721641C2985695025 @default.
- W2894721641 hasConceptScore W2894721641C31972630 @default.
- W2894721641 hasConceptScore W2894721641C33954974 @default.
- W2894721641 hasConceptScore W2894721641C41008148 @default.
- W2894721641 hasConceptScore W2894721641C44154836 @default.
- W2894721641 hasConceptScore W2894721641C47796450 @default.
- W2894721641 hasConceptScore W2894721641C79403827 @default.
- W2894721641 hasConceptScore W2894721641C89992363 @default.
- W2894721641 hasIssue "2" @default.
- W2894721641 hasLocation W28947216411 @default.
- W2894721641 hasOpenAccess W2894721641 @default.
- W2894721641 hasPrimaryLocation W28947216411 @default.
- W2894721641 hasRelatedWork W1564697527 @default.
- W2894721641 hasRelatedWork W2037585618 @default.
- W2894721641 hasRelatedWork W2039315115 @default.
- W2894721641 hasRelatedWork W2152738386 @default.
- W2894721641 hasRelatedWork W2367055135 @default.
- W2894721641 hasRelatedWork W2370717208 @default.
- W2894721641 hasRelatedWork W2743439649 @default.
- W2894721641 hasRelatedWork W2743685750 @default.
- W2894721641 hasRelatedWork W2919172799 @default.
- W2894721641 hasRelatedWork W3047144510 @default.
- W2894721641 hasVolume "1" @default.
- W2894721641 isParatext "false" @default.
- W2894721641 isRetracted "false" @default.