Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894726598> ?p ?o ?g. }
- W2894726598 endingPage "1752" @default.
- W2894726598 startingPage "1747" @default.
- W2894726598 abstract "Objective: The aim of this study was to determine the diagnostic accuracy of different machine learning algorithms for breast cancer risk calculation. Methods: A meta-analysis was conducted of published research articles on diagnostic test accuracy of different machine learning algorithms for breast cancer risk calculation published between January 2000 and May 2018 in the online article databases of PubMed, ProQuest and EBSCO. Paired forest plots were employed for the analysis. Numerical values for sensitivity and specificity were obtained from false negative (FN), false positive (FP), true negative (TN) and true positive (TP) rates, presented alongside graphical representations with boxes marking the values and horizontal lines showing the confidence intervals (CIs). Summary receiver operating characteristic (SROC) curves were applied to assess the performance of diagnostic tests. Data were processed using Review Manager 5.3 (RevMan 5.3). Results: A total of 1,879 articles were reviewed, of which 11 were selected for systematic review and meta-analysis. Fve algorithms for machine learning able to predict breast cancer risk were identified: Super Vector Machine (SVM); Artificial Neural Networks (ANN); Decision Tree (DT); Naive Bayes (NB); and K-Nearest Neighbor (KNN). With the SVM, the Area Under Curve (AUC) from the SROC was > 90%, therefore classified into the excellent category. Conclusion: The meta-analysis confirmed that the SVM algorithm is able to calculate breast cancer risk with better accuracy value than other machine learning algorithms." @default.
- W2894726598 created "2018-10-12" @default.
- W2894726598 creator A5032609851 @default.
- W2894726598 creator A5036520548 @default.
- W2894726598 creator A5063225283 @default.
- W2894726598 creator A5085460082 @default.
- W2894726598 date "2018-07-27" @default.
- W2894726598 modified "2023-10-12" @default.
- W2894726598 title "Diagnostic Accuracy of Different Machine Learning Algorithms for Breast Cancer Risk Calculation: a Meta-Analysis" @default.
- W2894726598 cites W118084869 @default.
- W2894726598 cites W1587497404 @default.
- W2894726598 cites W1589632398 @default.
- W2894726598 cites W1985041826 @default.
- W2894726598 cites W1993951809 @default.
- W2894726598 cites W1995972830 @default.
- W2894726598 cites W2042080283 @default.
- W2894726598 cites W2048701123 @default.
- W2894726598 cites W2051411536 @default.
- W2894726598 cites W2056288069 @default.
- W2894726598 cites W2056622672 @default.
- W2894726598 cites W2060061103 @default.
- W2894726598 cites W2106787323 @default.
- W2894726598 cites W2115091609 @default.
- W2894726598 cites W2134833483 @default.
- W2894726598 cites W2161426850 @default.
- W2894726598 cites W2313869316 @default.
- W2894726598 cites W2616247321 @default.
- W2894726598 cites W2751921462 @default.
- W2894726598 cites W2770459111 @default.
- W2894726598 cites W2775007101 @default.
- W2894726598 cites W2775577467 @default.
- W2894726598 cites W2787969363 @default.
- W2894726598 doi "https://doi.org/10.22034/apjcp.2018.19.7.1747" @default.
- W2894726598 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6165638" @default.
- W2894726598 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30049182" @default.
- W2894726598 hasPublicationYear "2018" @default.
- W2894726598 type Work @default.
- W2894726598 sameAs 2894726598 @default.
- W2894726598 citedByCount "37" @default.
- W2894726598 countsByYear W28947265982019 @default.
- W2894726598 countsByYear W28947265982020 @default.
- W2894726598 countsByYear W28947265982021 @default.
- W2894726598 countsByYear W28947265982022 @default.
- W2894726598 countsByYear W28947265982023 @default.
- W2894726598 crossrefType "journal-article" @default.
- W2894726598 hasAuthorship W2894726598A5032609851 @default.
- W2894726598 hasAuthorship W2894726598A5036520548 @default.
- W2894726598 hasAuthorship W2894726598A5063225283 @default.
- W2894726598 hasAuthorship W2894726598A5085460082 @default.
- W2894726598 hasConcept C105795698 @default.
- W2894726598 hasConcept C11413529 @default.
- W2894726598 hasConcept C119857082 @default.
- W2894726598 hasConcept C121608353 @default.
- W2894726598 hasConcept C12267149 @default.
- W2894726598 hasConcept C126322002 @default.
- W2894726598 hasConcept C127413603 @default.
- W2894726598 hasConcept C154945302 @default.
- W2894726598 hasConcept C21200559 @default.
- W2894726598 hasConcept C24326235 @default.
- W2894726598 hasConcept C33923547 @default.
- W2894726598 hasConcept C41008148 @default.
- W2894726598 hasConcept C44249647 @default.
- W2894726598 hasConcept C52001869 @default.
- W2894726598 hasConcept C530470458 @default.
- W2894726598 hasConcept C58471807 @default.
- W2894726598 hasConcept C71924100 @default.
- W2894726598 hasConcept C84525736 @default.
- W2894726598 hasConcept C95190672 @default.
- W2894726598 hasConceptScore W2894726598C105795698 @default.
- W2894726598 hasConceptScore W2894726598C11413529 @default.
- W2894726598 hasConceptScore W2894726598C119857082 @default.
- W2894726598 hasConceptScore W2894726598C121608353 @default.
- W2894726598 hasConceptScore W2894726598C12267149 @default.
- W2894726598 hasConceptScore W2894726598C126322002 @default.
- W2894726598 hasConceptScore W2894726598C127413603 @default.
- W2894726598 hasConceptScore W2894726598C154945302 @default.
- W2894726598 hasConceptScore W2894726598C21200559 @default.
- W2894726598 hasConceptScore W2894726598C24326235 @default.
- W2894726598 hasConceptScore W2894726598C33923547 @default.
- W2894726598 hasConceptScore W2894726598C41008148 @default.
- W2894726598 hasConceptScore W2894726598C44249647 @default.
- W2894726598 hasConceptScore W2894726598C52001869 @default.
- W2894726598 hasConceptScore W2894726598C530470458 @default.
- W2894726598 hasConceptScore W2894726598C58471807 @default.
- W2894726598 hasConceptScore W2894726598C71924100 @default.
- W2894726598 hasConceptScore W2894726598C84525736 @default.
- W2894726598 hasConceptScore W2894726598C95190672 @default.
- W2894726598 hasIssue "7" @default.
- W2894726598 hasLocation W28947265981 @default.
- W2894726598 hasOpenAccess W2894726598 @default.
- W2894726598 hasPrimaryLocation W28947265981 @default.
- W2894726598 hasRelatedWork W1470425429 @default.
- W2894726598 hasRelatedWork W3022791929 @default.
- W2894726598 hasRelatedWork W3186233728 @default.
- W2894726598 hasRelatedWork W4285225238 @default.
- W2894726598 hasRelatedWork W4291177832 @default.
- W2894726598 hasRelatedWork W4377964522 @default.
- W2894726598 hasRelatedWork W4384345534 @default.