Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894744280> ?p ?o ?g. }
- W2894744280 endingPage "370" @default.
- W2894744280 startingPage "355" @default.
- W2894744280 abstract "Recent studies have demonstrated that geographic location features collected using smartphones can be a powerful predictor for depression. While location information can be conveniently gathered by GPS, typical datasets suffer from significant periods of missing data due to various factors (e.g., phone power dynamics, limitations of GPS). A common approach is to remove the time periods with significant missing data before data analysis. In this paper, we develop an approach that fuses location data collected from two sources: GPS and WiFi association records, on smartphones, and evaluate its performance using a dataset collected from 79 college students. Our evaluation demonstrates that our data fusion approach leads to significantly more complete data. In addition, the features extracted from the more complete data present stronger correlation with self-report depression scores, and lead to depression prediction with much higher <inline-formula><tex-math notation=LaTeX>$F_1$</tex-math></inline-formula> scores (up to 0.76 compared to 0.5 before data fusion). We further investigate the scenario when including an additional data source, i.e., the data collected from a WiFi network infrastructure. Our results show that, while this additional data source leads to even more complete data, the resultant <inline-formula><tex-math notation=LaTeX>$F_1$</tex-math></inline-formula> scores are similar to those when only using the location data (i.e., GPS and WiFi association records) from the phones." @default.
- W2894744280 created "2018-10-12" @default.
- W2894744280 creator A5029041038 @default.
- W2894744280 creator A5033986477 @default.
- W2894744280 creator A5041802292 @default.
- W2894744280 creator A5050390023 @default.
- W2894744280 creator A5051393532 @default.
- W2894744280 creator A5076666788 @default.
- W2894744280 creator A5083159430 @default.
- W2894744280 creator A5085933217 @default.
- W2894744280 creator A5087525753 @default.
- W2894744280 creator A5088846595 @default.
- W2894744280 date "2021-06-01" @default.
- W2894744280 modified "2023-10-17" @default.
- W2894744280 title "Fusing Location Data for Depression Prediction" @default.
- W2894744280 cites W1894490285 @default.
- W2894744280 cites W2013787102 @default.
- W2894744280 cites W2018290008 @default.
- W2894744280 cites W2023772872 @default.
- W2894744280 cites W2026124805 @default.
- W2894744280 cites W2046779437 @default.
- W2894744280 cites W2050333060 @default.
- W2894744280 cites W2055800023 @default.
- W2894744280 cites W2056983531 @default.
- W2894744280 cites W2064731085 @default.
- W2894744280 cites W2066806488 @default.
- W2894744280 cites W2072055539 @default.
- W2894744280 cites W2093973716 @default.
- W2894744280 cites W2096309085 @default.
- W2894744280 cites W2116814040 @default.
- W2894744280 cites W2132322340 @default.
- W2894744280 cites W2149964364 @default.
- W2894744280 cites W2153635508 @default.
- W2894744280 cites W2156567116 @default.
- W2894744280 cites W2171436624 @default.
- W2894744280 cites W2258703375 @default.
- W2894744280 cites W2512085160 @default.
- W2894744280 cites W2516086211 @default.
- W2894744280 cites W2516478977 @default.
- W2894744280 cites W2517889164 @default.
- W2894744280 cites W2519191729 @default.
- W2894744280 cites W2538898996 @default.
- W2894744280 cites W2560951263 @default.
- W2894744280 cites W2592965535 @default.
- W2894744280 cites W2605108175 @default.
- W2894744280 cites W2611328865 @default.
- W2894744280 cites W2744939564 @default.
- W2894744280 cites W2794506852 @default.
- W2894744280 cites W2810111942 @default.
- W2894744280 cites W2894744280 @default.
- W2894744280 cites W48643329 @default.
- W2894744280 doi "https://doi.org/10.1109/tbdata.2018.2872569" @default.
- W2894744280 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35498556" @default.
- W2894744280 hasPublicationYear "2021" @default.
- W2894744280 type Work @default.
- W2894744280 sameAs 2894744280 @default.
- W2894744280 citedByCount "14" @default.
- W2894744280 countsByYear W28947442802019 @default.
- W2894744280 countsByYear W28947442802021 @default.
- W2894744280 countsByYear W28947442802022 @default.
- W2894744280 countsByYear W28947442802023 @default.
- W2894744280 crossrefType "journal-article" @default.
- W2894744280 hasAuthorship W2894744280A5029041038 @default.
- W2894744280 hasAuthorship W2894744280A5033986477 @default.
- W2894744280 hasAuthorship W2894744280A5041802292 @default.
- W2894744280 hasAuthorship W2894744280A5050390023 @default.
- W2894744280 hasAuthorship W2894744280A5051393532 @default.
- W2894744280 hasAuthorship W2894744280A5076666788 @default.
- W2894744280 hasAuthorship W2894744280A5083159430 @default.
- W2894744280 hasAuthorship W2894744280A5085933217 @default.
- W2894744280 hasAuthorship W2894744280A5087525753 @default.
- W2894744280 hasAuthorship W2894744280A5088846595 @default.
- W2894744280 hasBestOaLocation W28947442801 @default.
- W2894744280 hasConcept C119857082 @default.
- W2894744280 hasConcept C124101348 @default.
- W2894744280 hasConcept C138885662 @default.
- W2894744280 hasConcept C2778707766 @default.
- W2894744280 hasConcept C2988186277 @default.
- W2894744280 hasConcept C33923547 @default.
- W2894744280 hasConcept C33954974 @default.
- W2894744280 hasConcept C41008148 @default.
- W2894744280 hasConcept C41895202 @default.
- W2894744280 hasConcept C45357846 @default.
- W2894744280 hasConcept C60229501 @default.
- W2894744280 hasConcept C76155785 @default.
- W2894744280 hasConcept C77088390 @default.
- W2894744280 hasConcept C94375191 @default.
- W2894744280 hasConceptScore W2894744280C119857082 @default.
- W2894744280 hasConceptScore W2894744280C124101348 @default.
- W2894744280 hasConceptScore W2894744280C138885662 @default.
- W2894744280 hasConceptScore W2894744280C2778707766 @default.
- W2894744280 hasConceptScore W2894744280C2988186277 @default.
- W2894744280 hasConceptScore W2894744280C33923547 @default.
- W2894744280 hasConceptScore W2894744280C33954974 @default.
- W2894744280 hasConceptScore W2894744280C41008148 @default.
- W2894744280 hasConceptScore W2894744280C41895202 @default.
- W2894744280 hasConceptScore W2894744280C45357846 @default.
- W2894744280 hasConceptScore W2894744280C60229501 @default.