Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894763306> ?p ?o ?g. }
- W2894763306 endingPage "4075" @default.
- W2894763306 startingPage "4063" @default.
- W2894763306 abstract "The k-nearest neighbor (k-NN) method relies on Euclidean distance as a classification measure to obtain the labels of the test samples. Recently, many studies show that joint region of test samples can make full use of the spatial information of hyperspectral image. However, traditional joint k-NN algorithm holds that the weight of the each test sample in a local region is identical, which is not reasonable, since each test sample may have different importance and distribution. To solve this problem, a weighted joint nearest neighbor and sparse representation method is proposed in this paper, which consists of the following steps: first, a Gaussian weighted function has been introduced into the joint region of test pixels so as to obtain the weighted joint Euclidean distance. Next, the sparse representation-based method is adopted to obtain the representation residuals. Finally, a decision function is applied to achieve the balance between the weighted joint Euclidean distance and residual of the sparse representation. Experiments performed on the four real HSI datasets have demonstrated that the proposed methods can achieve better performance than several previous methods." @default.
- W2894763306 created "2018-10-12" @default.
- W2894763306 creator A5037075182 @default.
- W2894763306 creator A5042231008 @default.
- W2894763306 creator A5057522977 @default.
- W2894763306 creator A5065061505 @default.
- W2894763306 creator A5067080265 @default.
- W2894763306 creator A5079392881 @default.
- W2894763306 date "2018-11-01" @default.
- W2894763306 modified "2023-10-11" @default.
- W2894763306 title "Hyperspectral Image Classification via Weighted Joint Nearest Neighbor and Sparse Representation" @default.
- W2894763306 cites W1526295910 @default.
- W2894763306 cites W1799946925 @default.
- W2894763306 cites W1964541653 @default.
- W2894763306 cites W1974774078 @default.
- W2894763306 cites W1976709621 @default.
- W2894763306 cites W1997565609 @default.
- W2894763306 cites W1998030734 @default.
- W2894763306 cites W2009286595 @default.
- W2894763306 cites W2018482939 @default.
- W2894763306 cites W2019338222 @default.
- W2894763306 cites W2021229920 @default.
- W2894763306 cites W2038386419 @default.
- W2894763306 cites W2043665634 @default.
- W2894763306 cites W2045095960 @default.
- W2894763306 cites W2045757377 @default.
- W2894763306 cites W2052160904 @default.
- W2894763306 cites W2053852479 @default.
- W2894763306 cites W2056621966 @default.
- W2894763306 cites W2059217921 @default.
- W2894763306 cites W2092869901 @default.
- W2894763306 cites W2095306443 @default.
- W2894763306 cites W2097092275 @default.
- W2894763306 cites W2097915756 @default.
- W2894763306 cites W2100975942 @default.
- W2894763306 cites W2101711129 @default.
- W2894763306 cites W2105386417 @default.
- W2894763306 cites W2108597246 @default.
- W2894763306 cites W2113464037 @default.
- W2894763306 cites W2128550928 @default.
- W2894763306 cites W2129587305 @default.
- W2894763306 cites W2129812935 @default.
- W2894763306 cites W2134663338 @default.
- W2894763306 cites W2136251662 @default.
- W2894763306 cites W2144348684 @default.
- W2894763306 cites W2146987667 @default.
- W2894763306 cites W2147590979 @default.
- W2894763306 cites W2150045166 @default.
- W2894763306 cites W2152057649 @default.
- W2894763306 cites W2153635508 @default.
- W2894763306 cites W2154240401 @default.
- W2894763306 cites W2163398148 @default.
- W2894763306 cites W2166923144 @default.
- W2894763306 cites W2321547661 @default.
- W2894763306 cites W2345118402 @default.
- W2894763306 cites W2516506474 @default.
- W2894763306 cites W2547748020 @default.
- W2894763306 cites W2555332322 @default.
- W2894763306 cites W2560082588 @default.
- W2894763306 cites W2595650414 @default.
- W2894763306 cites W2595902385 @default.
- W2894763306 cites W2750085043 @default.
- W2894763306 cites W2765191464 @default.
- W2894763306 cites W2768211636 @default.
- W2894763306 cites W2770495564 @default.
- W2894763306 cites W2793607269 @default.
- W2894763306 cites W2795396578 @default.
- W2894763306 cites W2795844359 @default.
- W2894763306 cites W2810874828 @default.
- W2894763306 cites W2887798198 @default.
- W2894763306 cites W2892246676 @default.
- W2894763306 cites W2897194080 @default.
- W2894763306 doi "https://doi.org/10.1109/jstars.2018.2869376" @default.
- W2894763306 hasPublicationYear "2018" @default.
- W2894763306 type Work @default.
- W2894763306 sameAs 2894763306 @default.
- W2894763306 citedByCount "36" @default.
- W2894763306 countsByYear W28947633062018 @default.
- W2894763306 countsByYear W28947633062019 @default.
- W2894763306 countsByYear W28947633062020 @default.
- W2894763306 countsByYear W28947633062021 @default.
- W2894763306 countsByYear W28947633062022 @default.
- W2894763306 countsByYear W28947633062023 @default.
- W2894763306 crossrefType "journal-article" @default.
- W2894763306 hasAuthorship W2894763306A5037075182 @default.
- W2894763306 hasAuthorship W2894763306A5042231008 @default.
- W2894763306 hasAuthorship W2894763306A5057522977 @default.
- W2894763306 hasAuthorship W2894763306A5065061505 @default.
- W2894763306 hasAuthorship W2894763306A5067080265 @default.
- W2894763306 hasAuthorship W2894763306A5079392881 @default.
- W2894763306 hasConcept C113238511 @default.
- W2894763306 hasConcept C11413529 @default.
- W2894763306 hasConcept C120174047 @default.
- W2894763306 hasConcept C121332964 @default.
- W2894763306 hasConcept C124066611 @default.
- W2894763306 hasConcept C153180895 @default.
- W2894763306 hasConcept C154945302 @default.
- W2894763306 hasConcept C155512373 @default.