Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894767811> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2894767811 abstract "Future advanced driver assistance systems (ADAS) as well as autonomous driving functions will extend their applicability to more complex highway scenarios and inner-city traffic. For these systems it is a prerequisite to know how an encountered traffic scene is most likely going to evolve. Situation recognition aims to predict the high level behavior patterns traffic participants pursue. Thus, it provides valuable information that helps to predict the next few seconds of a traffic scene. The extension of ADAS and autonomous driving functions to more complex scenarios poses a problem to state-of-the-art situation recognition systems due to the variability of the encountered scene layouts, the presence of multiple interacting traffic participants and the concomitant large number of possible situation classes. This thesis proposes and discusses approaches that tackle these challenges. A novel discriminative maneuver estimation framework provides the possibility to assess traffic scenes with varying layout. It is based on reusable, partial classifiers that are combined online using a technique called pairwise probability coupling. The real-world evaluations indicate that the assembled probabilistic maneuver estimation is able to provide superior classification results. A novel interaction-aware situation recognition framework constructs a probabilistic situation assessment over multiple traffic participants without relying on independence assumptions. It allows to assess each traffic participant individually by using maneuver estimation systems that determine complete conditional distributions. A real-world evaluation outlines its applicability and shows its benefits. The challenges associated with the increasing number of possible situation classes are addressed in two ways. Both frameworks allow to reuse classifiers in different contexts. This reduces the number of models required to cope with a large variety of traffic scenes. Moreover, a situation hypotheses selection scheme provides an efficient way for reducing the number of situation hypotheses. This lowers the computational demands and eases the load on subsequent systems." @default.
- W2894767811 created "2018-10-12" @default.
- W2894767811 creator A5081535174 @default.
- W2894767811 date "2018-01-01" @default.
- W2894767811 modified "2023-10-17" @default.
- W2894767811 title "Probabilistic, Variable and Interaction-aware Situation Recognition" @default.
- W2894767811 hasPublicationYear "2018" @default.
- W2894767811 type Work @default.
- W2894767811 sameAs 2894767811 @default.
- W2894767811 citedByCount "0" @default.
- W2894767811 crossrefType "dissertation" @default.
- W2894767811 hasAuthorship W2894767811A5081535174 @default.
- W2894767811 hasConcept C119857082 @default.
- W2894767811 hasConcept C127413603 @default.
- W2894767811 hasConcept C154945302 @default.
- W2894767811 hasConcept C184898388 @default.
- W2894767811 hasConcept C206588197 @default.
- W2894767811 hasConcept C41008148 @default.
- W2894767811 hasConcept C49937458 @default.
- W2894767811 hasConcept C548081761 @default.
- W2894767811 hasConcept C87833898 @default.
- W2894767811 hasConcept C97931131 @default.
- W2894767811 hasConceptScore W2894767811C119857082 @default.
- W2894767811 hasConceptScore W2894767811C127413603 @default.
- W2894767811 hasConceptScore W2894767811C154945302 @default.
- W2894767811 hasConceptScore W2894767811C184898388 @default.
- W2894767811 hasConceptScore W2894767811C206588197 @default.
- W2894767811 hasConceptScore W2894767811C41008148 @default.
- W2894767811 hasConceptScore W2894767811C49937458 @default.
- W2894767811 hasConceptScore W2894767811C548081761 @default.
- W2894767811 hasConceptScore W2894767811C87833898 @default.
- W2894767811 hasConceptScore W2894767811C97931131 @default.
- W2894767811 hasLocation W28947678111 @default.
- W2894767811 hasOpenAccess W2894767811 @default.
- W2894767811 hasPrimaryLocation W28947678111 @default.
- W2894767811 hasRelatedWork W1480894066 @default.
- W2894767811 hasRelatedWork W2005392428 @default.
- W2894767811 hasRelatedWork W2135222901 @default.
- W2894767811 hasRelatedWork W2140025725 @default.
- W2894767811 hasRelatedWork W2212256329 @default.
- W2894767811 hasRelatedWork W2295144848 @default.
- W2894767811 hasRelatedWork W2321096069 @default.
- W2894767811 hasRelatedWork W2590914976 @default.
- W2894767811 hasRelatedWork W2607497913 @default.
- W2894767811 hasRelatedWork W2769735038 @default.
- W2894767811 hasRelatedWork W2893741601 @default.
- W2894767811 hasRelatedWork W2901354758 @default.
- W2894767811 hasRelatedWork W2981848349 @default.
- W2894767811 hasRelatedWork W3009023036 @default.
- W2894767811 hasRelatedWork W3088631381 @default.
- W2894767811 hasRelatedWork W3094004591 @default.
- W2894767811 hasRelatedWork W3102725979 @default.
- W2894767811 hasRelatedWork W3205850983 @default.
- W2894767811 hasRelatedWork W627563116 @default.
- W2894767811 hasRelatedWork W88657735 @default.
- W2894767811 isParatext "false" @default.
- W2894767811 isRetracted "false" @default.
- W2894767811 magId "2894767811" @default.
- W2894767811 workType "dissertation" @default.