Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894769705> ?p ?o ?g. }
- W2894769705 abstract "The increasing amount of scientific literature in biological and biomedical science research has created a challenge in the continuous and reliable curation of the latest knowledge discovered, and automatic biomedical text-mining has been one of the answers to this chal-lenge. In this paper, we aim to further improve the reliability of biomedical text-mining by training the system to directly simulate the human behaviors such as querying the PubMed, selecting articles from queried results, and reading selected articles for knowledge. We take advantage of the efficiency of biomedical text-mining, the flexibility of deep reinforcement learning, and the massive amount of knowledge collected in UMLS into an integrative arti-ficial intelligent reader that can automatically identify the authentic articles and effectively acquire the knowledge conveyed in the articles. We construct a system, whose current pri-mary task is to build the genetic association database between genes and complex traits of the human. Our contributions in this paper are three-fold: 1) We propose to improve the reliability of text-mining by building a system that can directly simulate the behavior of a researcher, and we develop corresponding methods, such as Bi-directional LSTM for text mining and Deep Q-Network for organizing behaviors. 2) We demonstrate the effec-tiveness of our system with an example in constructing a genetic association database. 3) We release our implementation as a generic framework for researchers in the community to conveniently construct other databases." @default.
- W2894769705 created "2018-10-12" @default.
- W2894769705 creator A5009547049 @default.
- W2894769705 creator A5034679877 @default.
- W2894769705 creator A5051617344 @default.
- W2894769705 creator A5052422214 @default.
- W2894769705 creator A5056448190 @default.
- W2894769705 creator A5069412482 @default.
- W2894769705 creator A5072244531 @default.
- W2894769705 date "2018-10-05" @default.
- W2894769705 modified "2023-09-26" @default.
- W2894769705 title "Automatic Human-like Mining and Constructing Reliable Genetic Association Database with Deep Reinforcement Learning" @default.
- W2894769705 cites W1968761064 @default.
- W2894769705 cites W2012910912 @default.
- W2894769705 cites W2014578307 @default.
- W2894769705 cites W2024980584 @default.
- W2894769705 cites W2048296798 @default.
- W2894769705 cites W2057954853 @default.
- W2894769705 cites W2079735306 @default.
- W2894769705 cites W2104070133 @default.
- W2894769705 cites W2108475224 @default.
- W2894769705 cites W2116868464 @default.
- W2894769705 cites W2128407051 @default.
- W2894769705 cites W2145339207 @default.
- W2894769705 cites W2159583324 @default.
- W2894769705 cites W2168905447 @default.
- W2894769705 cites W2214674395 @default.
- W2894769705 cites W2310425190 @default.
- W2894769705 cites W2311607323 @default.
- W2894769705 cites W2554715427 @default.
- W2894769705 cites W2590875575 @default.
- W2894769705 cites W2600659824 @default.
- W2894769705 cites W2734608416 @default.
- W2894769705 cites W2747886998 @default.
- W2894769705 cites W2761525601 @default.
- W2894769705 cites W2774044277 @default.
- W2894769705 cites W2884063414 @default.
- W2894769705 cites W2963380037 @default.
- W2894769705 cites W32403112 @default.
- W2894769705 doi "https://doi.org/10.1101/434803" @default.
- W2894769705 hasPublicationYear "2018" @default.
- W2894769705 type Work @default.
- W2894769705 sameAs 2894769705 @default.
- W2894769705 citedByCount "0" @default.
- W2894769705 crossrefType "posted-content" @default.
- W2894769705 hasAuthorship W2894769705A5009547049 @default.
- W2894769705 hasAuthorship W2894769705A5034679877 @default.
- W2894769705 hasAuthorship W2894769705A5051617344 @default.
- W2894769705 hasAuthorship W2894769705A5052422214 @default.
- W2894769705 hasAuthorship W2894769705A5056448190 @default.
- W2894769705 hasAuthorship W2894769705A5069412482 @default.
- W2894769705 hasAuthorship W2894769705A5072244531 @default.
- W2894769705 hasBestOaLocation W28947697051 @default.
- W2894769705 hasConcept C105795698 @default.
- W2894769705 hasConcept C108583219 @default.
- W2894769705 hasConcept C111472728 @default.
- W2894769705 hasConcept C121332964 @default.
- W2894769705 hasConcept C138885662 @default.
- W2894769705 hasConcept C142853389 @default.
- W2894769705 hasConcept C154945302 @default.
- W2894769705 hasConcept C163258240 @default.
- W2894769705 hasConcept C165141518 @default.
- W2894769705 hasConcept C17744445 @default.
- W2894769705 hasConcept C193524817 @default.
- W2894769705 hasConcept C199360897 @default.
- W2894769705 hasConcept C199539241 @default.
- W2894769705 hasConcept C204321447 @default.
- W2894769705 hasConcept C23123220 @default.
- W2894769705 hasConcept C2780598303 @default.
- W2894769705 hasConcept C2780801425 @default.
- W2894769705 hasConcept C33923547 @default.
- W2894769705 hasConcept C41008148 @default.
- W2894769705 hasConcept C43214815 @default.
- W2894769705 hasConcept C554936623 @default.
- W2894769705 hasConcept C62520636 @default.
- W2894769705 hasConcept C71472368 @default.
- W2894769705 hasConcept C97541855 @default.
- W2894769705 hasConceptScore W2894769705C105795698 @default.
- W2894769705 hasConceptScore W2894769705C108583219 @default.
- W2894769705 hasConceptScore W2894769705C111472728 @default.
- W2894769705 hasConceptScore W2894769705C121332964 @default.
- W2894769705 hasConceptScore W2894769705C138885662 @default.
- W2894769705 hasConceptScore W2894769705C142853389 @default.
- W2894769705 hasConceptScore W2894769705C154945302 @default.
- W2894769705 hasConceptScore W2894769705C163258240 @default.
- W2894769705 hasConceptScore W2894769705C165141518 @default.
- W2894769705 hasConceptScore W2894769705C17744445 @default.
- W2894769705 hasConceptScore W2894769705C193524817 @default.
- W2894769705 hasConceptScore W2894769705C199360897 @default.
- W2894769705 hasConceptScore W2894769705C199539241 @default.
- W2894769705 hasConceptScore W2894769705C204321447 @default.
- W2894769705 hasConceptScore W2894769705C23123220 @default.
- W2894769705 hasConceptScore W2894769705C2780598303 @default.
- W2894769705 hasConceptScore W2894769705C2780801425 @default.
- W2894769705 hasConceptScore W2894769705C33923547 @default.
- W2894769705 hasConceptScore W2894769705C41008148 @default.
- W2894769705 hasConceptScore W2894769705C43214815 @default.
- W2894769705 hasConceptScore W2894769705C554936623 @default.
- W2894769705 hasConceptScore W2894769705C62520636 @default.
- W2894769705 hasConceptScore W2894769705C71472368 @default.