Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894772291> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2894772291 endingPage "184" @default.
- W2894772291 startingPage "178" @default.
- W2894772291 abstract "Extreme Learning Machine (ELM) method is proposed for single hidden layer feed-forward networks (SLFNs). The ELMemploys feed-forward neural network architecture and works with randomly determined input weights. In this aspect, ELM depends onprinciple that enables to determine weights and biases in the network. In the first phase of ELM that can be named as feature mapping,the usage of random values differs the ELM from other methods that employ a kernel function for feature mapping such as SupportVector Machines (SVM) and Deep Neural Networks. After the feature mapping, the main goal of the ELM is to learn weights betweenhidden and output layers by minimizing the error. The ELM has gained much more popularity recently; and can be utilized forclassification, regression, and dimension reduction. In literature, Twitter sentiment analysis is generally considered as a classificationtask. Therefore, in this study, the basic ELM is utilized for Twitter sentiment analysis and compared with the SVM which is one of themost successful machine learning algorithms used for sentiment analysis. Experiments are conducted on two different Turkish datasets.Experimental results show that the performance of the two methods are slightly different, but SVM outperforms basic ELM." @default.
- W2894772291 created "2018-10-12" @default.
- W2894772291 creator A5015953073 @default.
- W2894772291 creator A5043537001 @default.
- W2894772291 creator A5078243249 @default.
- W2894772291 date "2018-09-29" @default.
- W2894772291 modified "2023-09-25" @default.
- W2894772291 title "An Empirical Study of the Extreme Learning Machine for Twitter Sentiment Analysis" @default.
- W2894772291 doi "https://doi.org/10.18201/ijisae.2018644774" @default.
- W2894772291 hasPublicationYear "2018" @default.
- W2894772291 type Work @default.
- W2894772291 sameAs 2894772291 @default.
- W2894772291 citedByCount "9" @default.
- W2894772291 countsByYear W28947722912019 @default.
- W2894772291 countsByYear W28947722912020 @default.
- W2894772291 countsByYear W28947722912021 @default.
- W2894772291 countsByYear W28947722912022 @default.
- W2894772291 countsByYear W28947722912023 @default.
- W2894772291 crossrefType "journal-article" @default.
- W2894772291 hasAuthorship W2894772291A5015953073 @default.
- W2894772291 hasAuthorship W2894772291A5043537001 @default.
- W2894772291 hasAuthorship W2894772291A5078243249 @default.
- W2894772291 hasBestOaLocation W28947722911 @default.
- W2894772291 hasConcept C119857082 @default.
- W2894772291 hasConcept C12267149 @default.
- W2894772291 hasConcept C138885662 @default.
- W2894772291 hasConcept C153180895 @default.
- W2894772291 hasConcept C154945302 @default.
- W2894772291 hasConcept C15744967 @default.
- W2894772291 hasConcept C2776401178 @default.
- W2894772291 hasConcept C2780150128 @default.
- W2894772291 hasConcept C2780586970 @default.
- W2894772291 hasConcept C41008148 @default.
- W2894772291 hasConcept C41895202 @default.
- W2894772291 hasConcept C50644808 @default.
- W2894772291 hasConcept C66402592 @default.
- W2894772291 hasConcept C77805123 @default.
- W2894772291 hasConceptScore W2894772291C119857082 @default.
- W2894772291 hasConceptScore W2894772291C12267149 @default.
- W2894772291 hasConceptScore W2894772291C138885662 @default.
- W2894772291 hasConceptScore W2894772291C153180895 @default.
- W2894772291 hasConceptScore W2894772291C154945302 @default.
- W2894772291 hasConceptScore W2894772291C15744967 @default.
- W2894772291 hasConceptScore W2894772291C2776401178 @default.
- W2894772291 hasConceptScore W2894772291C2780150128 @default.
- W2894772291 hasConceptScore W2894772291C2780586970 @default.
- W2894772291 hasConceptScore W2894772291C41008148 @default.
- W2894772291 hasConceptScore W2894772291C41895202 @default.
- W2894772291 hasConceptScore W2894772291C50644808 @default.
- W2894772291 hasConceptScore W2894772291C66402592 @default.
- W2894772291 hasConceptScore W2894772291C77805123 @default.
- W2894772291 hasIssue "6" @default.
- W2894772291 hasLocation W28947722911 @default.
- W2894772291 hasOpenAccess W2894772291 @default.
- W2894772291 hasPrimaryLocation W28947722911 @default.
- W2894772291 hasRelatedWork W2099369243 @default.
- W2894772291 hasRelatedWork W2322597012 @default.
- W2894772291 hasRelatedWork W2902466377 @default.
- W2894772291 hasRelatedWork W2955174913 @default.
- W2894772291 hasRelatedWork W2969890106 @default.
- W2894772291 hasRelatedWork W2975597301 @default.
- W2894772291 hasRelatedWork W3134233996 @default.
- W2894772291 hasRelatedWork W3194539120 @default.
- W2894772291 hasRelatedWork W4223656335 @default.
- W2894772291 hasRelatedWork W2345184372 @default.
- W2894772291 hasVolume "3" @default.
- W2894772291 isParatext "false" @default.
- W2894772291 isRetracted "false" @default.
- W2894772291 magId "2894772291" @default.
- W2894772291 workType "article" @default.