Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894773080> ?p ?o ?g. }
- W2894773080 abstract "Abstract Spatiotemporal forecasts of ecological phenomena are highly useful and significant in scientific and socio-economic applications. Nevertheless, developing the correlative models to make these forecasts is often stalled by the inadequate availability of the ecological time-series data. On the contrary, considerable amounts of temporally discrete biological records are being stored in public databases, and often include the sites and dates of the observation. While these data are reasonably suitable for the development of spatiotemporal forecast models, this possibility remains mostly untested. In this paper, we test an approach to develop spatiotemporal forecasts based on the dates and locations found in species occurrence records. This approach is based on ‘time-series classification’, a field of machine learning, and involves the application of a machine-learning algorithm to classify between time-series representing the environmental conditions that precede the occurrence records and time-series representing other environmental conditions, such as those that generally occur in the sites of the records. We employed this framework to predict the timing of emergence of fruiting bodies of two mushroom species ( Boletus edulis and Macrolepiota procera ) in countries of Europe, from 2009 to 2015. We compared the predictions from this approach with those from a ‘null’ model, based on the calendar dates of the records. Forecasts made from the environmental-based approach were consistently superior to those drawn from the date-based approach, averaging an area under the receiver operating characteristic curve (AUC) of 0.9 for B. edulis and 0.88 for M. procera , compared to an average AUC of 0.83 achieved by the null models for both species. Prediction errors were distributed across the study area and along the years, lending support to the spatiotemporal representativeness of the values of accuracy measured. Our approach, based on species occurrence records, was able to provide useful forecasts of the timing of emergence of two mushroom species across Europe. Given the increased availability and information contained in this type of records, particularly those supplemented with photographs, the range of events that could be possible to forecast is vast." @default.
- W2894773080 created "2018-10-12" @default.
- W2894773080 creator A5043058259 @default.
- W2894773080 date "2018-10-05" @default.
- W2894773080 modified "2023-09-23" @default.
- W2894773080 title "A machine learning approach for the spatiotemporal forecasting of ecological phenomena using dates of species occurrence records" @default.
- W2894773080 cites W1555708599 @default.
- W2894773080 cites W1562192608 @default.
- W2894773080 cites W1562877901 @default.
- W2894773080 cites W1633417561 @default.
- W2894773080 cites W1683999562 @default.
- W2894773080 cites W1778796894 @default.
- W2894773080 cites W1785021972 @default.
- W2894773080 cites W1788497923 @default.
- W2894773080 cites W1968354112 @default.
- W2894773080 cites W1980008615 @default.
- W2894773080 cites W1999428071 @default.
- W2894773080 cites W2003315067 @default.
- W2894773080 cites W2009082127 @default.
- W2894773080 cites W2013392009 @default.
- W2894773080 cites W2020571458 @default.
- W2894773080 cites W2032536435 @default.
- W2894773080 cites W2056868695 @default.
- W2894773080 cites W2060909720 @default.
- W2894773080 cites W2063488951 @default.
- W2894773080 cites W2089830759 @default.
- W2894773080 cites W2105663391 @default.
- W2894773080 cites W2109167110 @default.
- W2894773080 cites W2115952782 @default.
- W2894773080 cites W2123242325 @default.
- W2894773080 cites W2128827287 @default.
- W2894773080 cites W2135695572 @default.
- W2894773080 cites W2135751733 @default.
- W2894773080 cites W2145059667 @default.
- W2894773080 cites W2155653793 @default.
- W2894773080 cites W2277532236 @default.
- W2894773080 cites W2283215574 @default.
- W2894773080 cites W2515706791 @default.
- W2894773080 cites W2555077524 @default.
- W2894773080 cites W2593014945 @default.
- W2894773080 cites W2611891293 @default.
- W2894773080 cites W2745371189 @default.
- W2894773080 cites W2762666873 @default.
- W2894773080 cites W2770682480 @default.
- W2894773080 cites W2802514253 @default.
- W2894773080 cites W3098918569 @default.
- W2894773080 cites W42289837 @default.
- W2894773080 cites W429766147 @default.
- W2894773080 doi "https://doi.org/10.1101/435289" @default.
- W2894773080 hasPublicationYear "2018" @default.
- W2894773080 type Work @default.
- W2894773080 sameAs 2894773080 @default.
- W2894773080 citedByCount "0" @default.
- W2894773080 crossrefType "posted-content" @default.
- W2894773080 hasAuthorship W2894773080A5043058259 @default.
- W2894773080 hasBestOaLocation W28947730801 @default.
- W2894773080 hasConcept C119857082 @default.
- W2894773080 hasConcept C143724316 @default.
- W2894773080 hasConcept C151406439 @default.
- W2894773080 hasConcept C151730666 @default.
- W2894773080 hasConcept C154945302 @default.
- W2894773080 hasConcept C177897776 @default.
- W2894773080 hasConcept C18903297 @default.
- W2894773080 hasConcept C202444582 @default.
- W2894773080 hasConcept C205649164 @default.
- W2894773080 hasConcept C2992790187 @default.
- W2894773080 hasConcept C33923547 @default.
- W2894773080 hasConcept C41008148 @default.
- W2894773080 hasConcept C52119013 @default.
- W2894773080 hasConcept C86803240 @default.
- W2894773080 hasConcept C95457728 @default.
- W2894773080 hasConcept C9652623 @default.
- W2894773080 hasConceptScore W2894773080C119857082 @default.
- W2894773080 hasConceptScore W2894773080C143724316 @default.
- W2894773080 hasConceptScore W2894773080C151406439 @default.
- W2894773080 hasConceptScore W2894773080C151730666 @default.
- W2894773080 hasConceptScore W2894773080C154945302 @default.
- W2894773080 hasConceptScore W2894773080C177897776 @default.
- W2894773080 hasConceptScore W2894773080C18903297 @default.
- W2894773080 hasConceptScore W2894773080C202444582 @default.
- W2894773080 hasConceptScore W2894773080C205649164 @default.
- W2894773080 hasConceptScore W2894773080C2992790187 @default.
- W2894773080 hasConceptScore W2894773080C33923547 @default.
- W2894773080 hasConceptScore W2894773080C41008148 @default.
- W2894773080 hasConceptScore W2894773080C52119013 @default.
- W2894773080 hasConceptScore W2894773080C86803240 @default.
- W2894773080 hasConceptScore W2894773080C95457728 @default.
- W2894773080 hasConceptScore W2894773080C9652623 @default.
- W2894773080 hasLocation W28947730801 @default.
- W2894773080 hasOpenAccess W2894773080 @default.
- W2894773080 hasPrimaryLocation W28947730801 @default.
- W2894773080 hasRelatedWork W2618866090 @default.
- W2894773080 hasRelatedWork W2779836327 @default.
- W2894773080 hasRelatedWork W3093279390 @default.
- W2894773080 hasRelatedWork W3179488938 @default.
- W2894773080 hasRelatedWork W3191999071 @default.
- W2894773080 hasRelatedWork W4206202795 @default.
- W2894773080 hasRelatedWork W4212887618 @default.
- W2894773080 hasRelatedWork W4213225422 @default.
- W2894773080 hasRelatedWork W4224098276 @default.