Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894776929> ?p ?o ?g. }
- W2894776929 endingPage "57662" @default.
- W2894776929 startingPage "57655" @default.
- W2894776929 abstract "Owning to the booming of social media, making comments or expressing opinions about merchandises online becomes easier than before. Data from social media might be one of the essential inputs for forecasting sales of vehicles. Besides, some other effects, such as stock market values, have influences on purchasing power of vehicles. In this paper, both multivariate regression models with social media data and stock market values and time series models are employed to predict monthly total vehicle sales. The least squares support vector regression (LSSVR) models are used to deal with multivariate regression data. Three types of data, namely sentiment scores of tweets, stock market values, and hybrid data, are employed in this paper to forecast monthly total vehicle sales in USA. The hybrid data contain both sentiment scores of tweets and stock market values. In addition, seasonal factors of monthly total vehicle sales are employed to deseasonalizing both monthly total vehicle sales and three types of input data. The time series models include the naive model, the exponential smoothing model, the autoregressive integrated moving average model, the seasonal autoregressive integrated moving average model, and backpropagation neural networks and LSSVR with time series models. The numerical results indicate that using hybrid data with deseasonalizing procedures by the LSSVR models can obtain more accurate results than other models with different data. Thus, both social media data and stock values are essential to forecast monthly total vehicle sales; and deseasonalizing procedures can improve forecasting accuracy in predicting monthly total vehicle sales." @default.
- W2894776929 created "2018-10-12" @default.
- W2894776929 creator A5015066964 @default.
- W2894776929 creator A5053089335 @default.
- W2894776929 date "2018-01-01" @default.
- W2894776929 modified "2023-10-14" @default.
- W2894776929 title "Predicting Vehicle Sales by Sentiment Analysis of Twitter Data and Stock Market Values" @default.
- W2894776929 cites W1596717185 @default.
- W2894776929 cites W1663792126 @default.
- W2894776929 cites W1797539709 @default.
- W2894776929 cites W1876581287 @default.
- W2894776929 cites W1978996791 @default.
- W2894776929 cites W1987425720 @default.
- W2894776929 cites W1989498090 @default.
- W2894776929 cites W2014158063 @default.
- W2894776929 cites W2017561014 @default.
- W2894776929 cites W2030903867 @default.
- W2894776929 cites W2032509147 @default.
- W2894776929 cites W2075964046 @default.
- W2894776929 cites W2086691529 @default.
- W2894776929 cites W2110510303 @default.
- W2894776929 cites W2156909104 @default.
- W2894776929 cites W2169814416 @default.
- W2894776929 cites W2201256614 @default.
- W2894776929 cites W2206216941 @default.
- W2894776929 cites W2277115990 @default.
- W2894776929 cites W2295594781 @default.
- W2894776929 cites W2509192301 @default.
- W2894776929 cites W2516396761 @default.
- W2894776929 cites W2539161094 @default.
- W2894776929 cites W2566234880 @default.
- W2894776929 cites W2585078266 @default.
- W2894776929 cites W2619799373 @default.
- W2894776929 cites W2762076582 @default.
- W2894776929 cites W2772580377 @default.
- W2894776929 cites W2780178879 @default.
- W2894776929 cites W2789564306 @default.
- W2894776929 cites W3125170714 @default.
- W2894776929 cites W4239510810 @default.
- W2894776929 cites W4239946314 @default.
- W2894776929 doi "https://doi.org/10.1109/access.2018.2873730" @default.
- W2894776929 hasPublicationYear "2018" @default.
- W2894776929 type Work @default.
- W2894776929 sameAs 2894776929 @default.
- W2894776929 citedByCount "65" @default.
- W2894776929 countsByYear W28947769292019 @default.
- W2894776929 countsByYear W28947769292020 @default.
- W2894776929 countsByYear W28947769292021 @default.
- W2894776929 countsByYear W28947769292022 @default.
- W2894776929 countsByYear W28947769292023 @default.
- W2894776929 crossrefType "journal-article" @default.
- W2894776929 hasAuthorship W2894776929A5015066964 @default.
- W2894776929 hasAuthorship W2894776929A5053089335 @default.
- W2894776929 hasBestOaLocation W28947769291 @default.
- W2894776929 hasConcept C127413603 @default.
- W2894776929 hasConcept C136764020 @default.
- W2894776929 hasConcept C149782125 @default.
- W2894776929 hasConcept C151730666 @default.
- W2894776929 hasConcept C154945302 @default.
- W2894776929 hasConcept C162324750 @default.
- W2894776929 hasConcept C204036174 @default.
- W2894776929 hasConcept C2780299701 @default.
- W2894776929 hasConcept C2780762169 @default.
- W2894776929 hasConcept C41008148 @default.
- W2894776929 hasConcept C518677369 @default.
- W2894776929 hasConcept C66402592 @default.
- W2894776929 hasConcept C78519656 @default.
- W2894776929 hasConcept C86803240 @default.
- W2894776929 hasConceptScore W2894776929C127413603 @default.
- W2894776929 hasConceptScore W2894776929C136764020 @default.
- W2894776929 hasConceptScore W2894776929C149782125 @default.
- W2894776929 hasConceptScore W2894776929C151730666 @default.
- W2894776929 hasConceptScore W2894776929C154945302 @default.
- W2894776929 hasConceptScore W2894776929C162324750 @default.
- W2894776929 hasConceptScore W2894776929C204036174 @default.
- W2894776929 hasConceptScore W2894776929C2780299701 @default.
- W2894776929 hasConceptScore W2894776929C2780762169 @default.
- W2894776929 hasConceptScore W2894776929C41008148 @default.
- W2894776929 hasConceptScore W2894776929C518677369 @default.
- W2894776929 hasConceptScore W2894776929C66402592 @default.
- W2894776929 hasConceptScore W2894776929C78519656 @default.
- W2894776929 hasConceptScore W2894776929C86803240 @default.
- W2894776929 hasFunder F4320322795 @default.
- W2894776929 hasLocation W28947769291 @default.
- W2894776929 hasOpenAccess W2894776929 @default.
- W2894776929 hasPrimaryLocation W28947769291 @default.
- W2894776929 hasRelatedWork W2070013029 @default.
- W2894776929 hasRelatedWork W2247231580 @default.
- W2894776929 hasRelatedWork W2771683363 @default.
- W2894776929 hasRelatedWork W2786487836 @default.
- W2894776929 hasRelatedWork W3034578599 @default.
- W2894776929 hasRelatedWork W3169167169 @default.
- W2894776929 hasRelatedWork W3210308774 @default.
- W2894776929 hasRelatedWork W4280493991 @default.
- W2894776929 hasRelatedWork W4289517070 @default.
- W2894776929 hasRelatedWork W4327500494 @default.
- W2894776929 hasVolume "6" @default.
- W2894776929 isParatext "false" @default.