Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894777213> ?p ?o ?g. }
- W2894777213 abstract "Author(s): Tom, Kyle Brandon | Advisor(s): Yao, Jie | Abstract: AbstractGraphite Oxide Template Based Synthesis and Characterization of Metal Oxide NanosheetsbyKyle B. TomDoctor of Philosophy inEngineering – Materials Science and EngineeringUniversity of California, BerkeleyProfessor Jie Yao, ChairTwo dimensional materials and their composite structures show unique and favorable properties for many different kinds of applications and physical studies. Isolated 2D materials have shown a unique array of physical phenomena, including the room temperature observation of the quantum Hall effect, as well as enhanced physical properties, including large exciton energies and extremely high carrier mobilities. Composites have shown enhanced performance in traditional applications, including enhanced photocatalysis and battery performance, that stems from a synergistic effect between the individual materials in the composite. However, there is a limited number of naturally layered materials, an even smaller subset that is stable in ambient conditions. As such, it is beneficial to find 2D materials with better properties that may originate from other types of crystals. It has been predicted certain types of crystal structures, such as wurtzite, will form a two-dimensional phase similar to αBN below a particular thickness threshold. ZnO, and its graphitic form (gZnO) is of particular interest due to its favorable optical properties and oxidation resistance. gZnO has also been shown to have superior piezoelectric performance over similarly structured most other 2D materials, including BN and transition metal dichalcogenides (TMDCs). It also has shown excellent properties for many other applications that range from magnetism to catalysis. However, forming such confined systems is difficult and has limited the lateral size significantly. This has limited experimental work on this system, prohibiting application and basic understanding.This dissertation explores the use of a graphite oxide template technique that confines the growth direction to synthesize multiple metal oxide nanosheets, with specific focus on sub-nm ZnO. Graphite oxide, a chemically functionalized form of graphene, has many properties that are favorable for use as a template. The interlayer distance ranges from 0.6 – 1.2 nm, creating a nanosized reactor. Additionally, graphite oxide templates are hydrophilic; this allows templates to be easily to synthesized in water by sonication and helps aqueous precursors be drawn in between layers. Because of these advantages, as well as the large template size and uniformity, graphite oxide offers a unique opportunity for nanosheet synthesis. This method shows growth of nanosheets in the tens of microns size. The structure of these composites and the nanosheets are presented here, including TEM side view images of the stacking and fine geometry verification of the gZnO transition using XANES and thorough simulation work. Changes in the optoelectronic properties are determined through various measurements including XAS, EELS, XPS, and electronic transport. In particular, gZnO has a massive increase in the bandgap and a strong enhancement in the Zn 4s state availability. Improvements and advantages of this method are shown, including the compatibility with plasma cleaning and doping.In addition to van der Waals materials and thickness dependent structures, a significant amount of work has been focused on taking typical 3D crystals and growing them into two dimensions. This technique offered a way to synthesize some of these nanosheets. Fe2O3 was used as a test case and showed similar lateral sizes to the gZnO. Composites of the synthesized Fe2O3 nanosheets and the rGO showed strong interactions between the two, leading to some unique properties. The rGO transfers a significant amount of charge to the Fe2O3, most likely as a way to passivate the dangling bonds in the crystal. The XAS spectra of composites show significant formation of Fe+2 like states, making the hematite appear more like magnetite or maghemite. The magnetic properties of Fe2O3 are measured using SQUID and XMCD. Composites show enhanced coercivity and saturation, but no change in the overall magnetic structure. Other materials were also grown using this method, including doped and alloyed gZnO, NiO, and MgO. Various changes were observed, including strong changes in the core level shifts by XPS and the absence of an interlayer between SiO2 and rGO. Some limits of this technique were also found, as Al2O3 and CuO showed distinct nanoparticle formation instead of nanosheet formation. Finally, a rule of thumb is presented for materials that are compatible with this technique in hopes that it can be further refined and used as a guide for future work in this direction." @default.
- W2894777213 created "2018-10-12" @default.
- W2894777213 creator A5026014476 @default.
- W2894777213 date "2018-01-01" @default.
- W2894777213 modified "2023-09-27" @default.
- W2894777213 title "Graphite Oxide Template Based Synthesis and Characterization of Metal Oxide Nanosheets" @default.
- W2894777213 cites W1192137861 @default.
- W2894777213 cites W146429852 @default.
- W2894777213 cites W1633560137 @default.
- W2894777213 cites W1799035457 @default.
- W2894777213 cites W1838959485 @default.
- W2894777213 cites W1924297499 @default.
- W2894777213 cites W1927456795 @default.
- W2894777213 cites W1946631981 @default.
- W2894777213 cites W1963537598 @default.
- W2894777213 cites W1964372845 @default.
- W2894777213 cites W1965781747 @default.
- W2894777213 cites W1966870662 @default.
- W2894777213 cites W1967760164 @default.
- W2894777213 cites W1968247811 @default.
- W2894777213 cites W1968453319 @default.
- W2894777213 cites W1970127494 @default.
- W2894777213 cites W1970268838 @default.
- W2894777213 cites W1972356485 @default.
- W2894777213 cites W1973138424 @default.
- W2894777213 cites W1974482139 @default.
- W2894777213 cites W1974617291 @default.
- W2894777213 cites W1975192769 @default.
- W2894777213 cites W1977923056 @default.
- W2894777213 cites W1978961581 @default.
- W2894777213 cites W1979544533 @default.
- W2894777213 cites W1981368803 @default.
- W2894777213 cites W1981430594 @default.
- W2894777213 cites W1981533112 @default.
- W2894777213 cites W1984334552 @default.
- W2894777213 cites W1984556423 @default.
- W2894777213 cites W1988518074 @default.
- W2894777213 cites W1989670334 @default.
- W2894777213 cites W1992373357 @default.
- W2894777213 cites W1996218409 @default.
- W2894777213 cites W1998574376 @default.
- W2894777213 cites W2001330273 @default.
- W2894777213 cites W2003210979 @default.
- W2894777213 cites W2004222877 @default.
- W2894777213 cites W2004547931 @default.
- W2894777213 cites W2007781685 @default.
- W2894777213 cites W2008317504 @default.
- W2894777213 cites W2009254856 @default.
- W2894777213 cites W2009424276 @default.
- W2894777213 cites W2009904975 @default.
- W2894777213 cites W2010052150 @default.
- W2894777213 cites W2010511075 @default.
- W2894777213 cites W2016263497 @default.
- W2894777213 cites W2017393564 @default.
- W2894777213 cites W2017907265 @default.
- W2894777213 cites W2017941381 @default.
- W2894777213 cites W2021029613 @default.
- W2894777213 cites W2021162720 @default.
- W2894777213 cites W2021578585 @default.
- W2894777213 cites W2022074888 @default.
- W2894777213 cites W2022900048 @default.
- W2894777213 cites W2023690880 @default.
- W2894777213 cites W2023784262 @default.
- W2894777213 cites W2025404571 @default.
- W2894777213 cites W2028276072 @default.
- W2894777213 cites W2031654810 @default.
- W2894777213 cites W2036926759 @default.
- W2894777213 cites W2037013282 @default.
- W2894777213 cites W2037915714 @default.
- W2894777213 cites W2038509000 @default.
- W2894777213 cites W2041723310 @default.
- W2894777213 cites W2050972474 @default.
- W2894777213 cites W2051698493 @default.
- W2894777213 cites W2052004090 @default.
- W2894777213 cites W2058122340 @default.
- W2894777213 cites W2059603517 @default.
- W2894777213 cites W2061798607 @default.
- W2894777213 cites W2061800436 @default.
- W2894777213 cites W2062087967 @default.
- W2894777213 cites W2064379655 @default.
- W2894777213 cites W2064428037 @default.
- W2894777213 cites W2065370715 @default.
- W2894777213 cites W2070783164 @default.
- W2894777213 cites W2071684814 @default.
- W2894777213 cites W2073067854 @default.
- W2894777213 cites W2073542780 @default.
- W2894777213 cites W2074371643 @default.
- W2894777213 cites W2074684620 @default.
- W2894777213 cites W2075356879 @default.
- W2894777213 cites W2076222325 @default.
- W2894777213 cites W2076844948 @default.
- W2894777213 cites W2079105963 @default.
- W2894777213 cites W2079368752 @default.
- W2894777213 cites W2079622858 @default.
- W2894777213 cites W2083222334 @default.
- W2894777213 cites W2083498537 @default.
- W2894777213 cites W2083652896 @default.
- W2894777213 cites W2085373378 @default.
- W2894777213 cites W2088081187 @default.
- W2894777213 cites W2090725178 @default.