Matches in SemOpenAlex for { <https://semopenalex.org/work/W289478640> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W289478640 abstract "The problem of unstructured search plays the central role in our current understanding of the computational power of quantum computers. Improvement in the efficiency of solving unstructured search problem has an immediate consequence in the improvement in solving NP-complete problems. We introduce the new framework of natural continuous time quantum search algorithms, that in contrast to the adiabatic quantum algorithms, require neither the ground state initialization nor the adiabatic change of the Hamiltonian parameters. We moreover provide the concrete examples of transliteration from the unique marked element unstructured search problem into the particular class of quantum Hamiltonians, that facilitate the search in quantum continuous constant time. Since it is not clear how to implement that class of Hamiltonians one can either consider this result as a step toward proving that NP is a subset of BQP or as an indication that, that class of Hamiltonians is NP-hard to implement.Multiplicative weights update rule has been used in a few different fields as the underlying algorithmic structure. In its two different forms, vector and matrix, multiplicative update method provided a surprising simplicity and promised a small performance regret. We derive a slightly more general bound for the cumulative matrix multiplicative weights algorithm and introduce the iterative (streaming) matrix multiplicative weights algorithm with the same computational complexity and regret bound. In particular we also define the iterative Hadamard updates, matrix multiplicative updates algorithm, with the improved computational complexity for nonnegative games, from O(n³) to O(n²), and the same regret bound.Furthermore, we address the following question: What is the minimal size quantum circuit required to exactly implement a specified nqubit unitary operation U, without the use of ancilla qubits? Nielsen proved that a lower bound on the minimal size circuit is provided by the length of the geodesic between the identity I and U, where the length is defined by a suitable Finsler metric on SU(2ⁿ). We prove that the minimum circuit size that simulates U is in linear relation with the geodesic length and simulation parameters, for the given Finsler structure F. As a corollary we prove the highest lower bound and the lowest upper bound for the standard simulation technique, that show that by standard simulation one can not expect a better then n² times improvement in the upper bound over the result from Nielsen, Dowling, Gu and Doherty. Moreover, our equivalence result can be applied to the arbitrary path on the manifold including the one that is generated adiabatically.Finally we investigate the n-dimensional hypercube quantum random walk (QRW) as a particularly appealing example of a quantum walk because it has a natural implementation on a register on n qubits. However, any real implementation will encounter decoherence effects due to interactions with uncontrollable degrees of freedom. We present a complete characterization of the mixing properties of the hypercube QRW under a physically relevant Markovian decoherence model. In the local decoherence model considered the non-unitary dynamics are modeled as a sum of projections on individual qubits to an arbitrary direction on the Bloch sphere. We prove that there is always a classical asymptotic mixing in this model and specify the conditions under which instantaneous mixing always exists. We show that the latter mixing property, as well as the classical mixing time, depend heavily on the exact environmental interaction and its strength. Therefore, algorithmic applications of the QRW on the hypercube, if they intend to employ mixing properties, need to consider both the walk dynamics and the precise decoherence model." @default.
- W289478640 created "2016-06-24" @default.
- W289478640 creator A5089027518 @default.
- W289478640 date "2010-01-01" @default.
- W289478640 modified "2023-09-24" @default.
- W289478640 title "On Quantum Search, Experts and Geometry" @default.
- W289478640 cites W1561344775 @default.
- W289478640 cites W1586251222 @default.
- W289478640 cites W1854045309 @default.
- W289478640 cites W1967649643 @default.
- W289478640 cites W1973321785 @default.
- W289478640 cites W1975528636 @default.
- W289478640 cites W2009948449 @default.
- W289478640 cites W2010245486 @default.
- W289478640 cites W2013879218 @default.
- W289478640 cites W2028528561 @default.
- W289478640 cites W2058286540 @default.
- W289478640 cites W2059551605 @default.
- W289478640 cites W2067639709 @default.
- W289478640 cites W2112175392 @default.
- W289478640 hasPublicationYear "2010" @default.
- W289478640 type Work @default.
- W289478640 sameAs 289478640 @default.
- W289478640 citedByCount "0" @default.
- W289478640 crossrefType "journal-article" @default.
- W289478640 hasAuthorship W289478640A5089027518 @default.
- W289478640 hasConcept C105795698 @default.
- W289478640 hasConcept C11413529 @default.
- W289478640 hasConcept C121332964 @default.
- W289478640 hasConcept C134306372 @default.
- W289478640 hasConcept C137019171 @default.
- W289478640 hasConcept C179799912 @default.
- W289478640 hasConcept C192353077 @default.
- W289478640 hasConcept C33923547 @default.
- W289478640 hasConcept C41008148 @default.
- W289478640 hasConcept C42747912 @default.
- W289478640 hasConcept C50817715 @default.
- W289478640 hasConcept C58053490 @default.
- W289478640 hasConcept C62520636 @default.
- W289478640 hasConcept C80444323 @default.
- W289478640 hasConcept C84114770 @default.
- W289478640 hasConceptScore W289478640C105795698 @default.
- W289478640 hasConceptScore W289478640C11413529 @default.
- W289478640 hasConceptScore W289478640C121332964 @default.
- W289478640 hasConceptScore W289478640C134306372 @default.
- W289478640 hasConceptScore W289478640C137019171 @default.
- W289478640 hasConceptScore W289478640C179799912 @default.
- W289478640 hasConceptScore W289478640C192353077 @default.
- W289478640 hasConceptScore W289478640C33923547 @default.
- W289478640 hasConceptScore W289478640C41008148 @default.
- W289478640 hasConceptScore W289478640C42747912 @default.
- W289478640 hasConceptScore W289478640C50817715 @default.
- W289478640 hasConceptScore W289478640C58053490 @default.
- W289478640 hasConceptScore W289478640C62520636 @default.
- W289478640 hasConceptScore W289478640C80444323 @default.
- W289478640 hasConceptScore W289478640C84114770 @default.
- W289478640 hasLocation W2894786401 @default.
- W289478640 hasOpenAccess W289478640 @default.
- W289478640 hasPrimaryLocation W2894786401 @default.
- W289478640 hasRelatedWork W1502908815 @default.
- W289478640 hasRelatedWork W1546761470 @default.
- W289478640 hasRelatedWork W1600940427 @default.
- W289478640 hasRelatedWork W1646824980 @default.
- W289478640 hasRelatedWork W1819436510 @default.
- W289478640 hasRelatedWork W1968426792 @default.
- W289478640 hasRelatedWork W2043009362 @default.
- W289478640 hasRelatedWork W2086290259 @default.
- W289478640 hasRelatedWork W2138262447 @default.
- W289478640 hasRelatedWork W2598698509 @default.
- W289478640 hasRelatedWork W2950214556 @default.
- W289478640 hasRelatedWork W2963847269 @default.
- W289478640 hasRelatedWork W3019690156 @default.
- W289478640 hasRelatedWork W3104433882 @default.
- W289478640 hasRelatedWork W3105424158 @default.
- W289478640 hasRelatedWork W3112972053 @default.
- W289478640 hasRelatedWork W3164578493 @default.
- W289478640 hasRelatedWork W3211320463 @default.
- W289478640 hasRelatedWork W55528112 @default.
- W289478640 hasRelatedWork W2103426065 @default.
- W289478640 isParatext "false" @default.
- W289478640 isRetracted "false" @default.
- W289478640 magId "289478640" @default.
- W289478640 workType "article" @default.