Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894791732> ?p ?o ?g. }
- W2894791732 abstract "Modern malware typically makes use of a domain generation algorithm (DGA) to avoid command and control domains or IPs being seized or sinkholed. This means that an infected system may attempt to access many domains in an attempt to contact the command and control server. Therefore, the automatic detection of DGA domains is an important task, both for the sake of blocking malicious domains and identifying compromised hosts. However, many DGAs use English wordlists to generate plausibly clean-looking domain names; this makes automatic detection difficult. In this work, we devise a notion of difficulty for DGA families called the smashword score; this measures how much a DGA family looks like English words. We find that this measure accurately reflects how much a DGA family's domains look like they are made from natural English words. We then describe our new modeling approach, which is a combination of a novel recurrent neural network architecture with domain registration side information. Our experiments show the model is capable of effectively identifying domains generated by difficult DGA families. Our experiments also show that our model outperforms existing approaches, and is able to reliably detect difficult DGA families such as matsnu, suppobox, rovnix, and others. The model's performance compared to the state of the art is best for DGA families that resemble English words. We believe that this model could either be used in a standalone DGA domain detector---such as an endpoint security application---or alternately the model could be used as a part of a larger malware detection system." @default.
- W2894791732 created "2018-10-12" @default.
- W2894791732 creator A5009966265 @default.
- W2894791732 creator A5026833192 @default.
- W2894791732 creator A5042012540 @default.
- W2894791732 creator A5047925283 @default.
- W2894791732 creator A5089354836 @default.
- W2894791732 date "2018-10-04" @default.
- W2894791732 modified "2023-09-27" @default.
- W2894791732 title "Detecting DGA domains with recurrent neural networks and side information" @default.
- W2894791732 cites W1492347181 @default.
- W2894791732 cites W1531572846 @default.
- W2894791732 cites W1561983441 @default.
- W2894791732 cites W17316494 @default.
- W2894791732 cites W1815076433 @default.
- W2894791732 cites W1951216520 @default.
- W2894791732 cites W1954903228 @default.
- W2894791732 cites W1981294881 @default.
- W2894791732 cites W1995875735 @default.
- W2894791732 cites W2018970719 @default.
- W2894791732 cites W2064675550 @default.
- W2894791732 cites W2078622638 @default.
- W2894791732 cites W2101234009 @default.
- W2894791732 cites W2102283838 @default.
- W2894791732 cites W2144211451 @default.
- W2894791732 cites W2146729596 @default.
- W2894791732 cites W2160289821 @default.
- W2894791732 cites W2169172206 @default.
- W2894791732 cites W2296396094 @default.
- W2894791732 cites W2402144811 @default.
- W2894791732 cites W2510523362 @default.
- W2894791732 cites W2518248186 @default.
- W2894791732 cites W2528572867 @default.
- W2894791732 cites W2546910111 @default.
- W2894791732 cites W2557283755 @default.
- W2894791732 cites W2565766771 @default.
- W2894791732 cites W2584414817 @default.
- W2894791732 cites W2591856843 @default.
- W2894791732 cites W2594867206 @default.
- W2894791732 cites W2620022311 @default.
- W2894791732 cites W2744095836 @default.
- W2894791732 cites W2766805006 @default.
- W2894791732 cites W2773270814 @default.
- W2894791732 cites W2786906486 @default.
- W2894791732 cites W2950527759 @default.
- W2894791732 cites W2951527505 @default.
- W2894791732 cites W2963207607 @default.
- W2894791732 cites W2963564844 @default.
- W2894791732 cites W2964082701 @default.
- W2894791732 cites W2964153729 @default.
- W2894791732 cites W2964301649 @default.
- W2894791732 cites W2166843037 @default.
- W2894791732 cites W3023071679 @default.
- W2894791732 hasPublicationYear "2018" @default.
- W2894791732 type Work @default.
- W2894791732 sameAs 2894791732 @default.
- W2894791732 citedByCount "1" @default.
- W2894791732 countsByYear W28947917322019 @default.
- W2894791732 crossrefType "posted-content" @default.
- W2894791732 hasAuthorship W2894791732A5009966265 @default.
- W2894791732 hasAuthorship W2894791732A5026833192 @default.
- W2894791732 hasAuthorship W2894791732A5042012540 @default.
- W2894791732 hasAuthorship W2894791732A5047925283 @default.
- W2894791732 hasAuthorship W2894791732A5089354836 @default.
- W2894791732 hasConcept C119857082 @default.
- W2894791732 hasConcept C127413603 @default.
- W2894791732 hasConcept C134306372 @default.
- W2894791732 hasConcept C154945302 @default.
- W2894791732 hasConcept C201995342 @default.
- W2894791732 hasConcept C2780451532 @default.
- W2894791732 hasConcept C33923547 @default.
- W2894791732 hasConcept C36503486 @default.
- W2894791732 hasConcept C38652104 @default.
- W2894791732 hasConcept C41008148 @default.
- W2894791732 hasConcept C50644808 @default.
- W2894791732 hasConcept C541664917 @default.
- W2894791732 hasConceptScore W2894791732C119857082 @default.
- W2894791732 hasConceptScore W2894791732C127413603 @default.
- W2894791732 hasConceptScore W2894791732C134306372 @default.
- W2894791732 hasConceptScore W2894791732C154945302 @default.
- W2894791732 hasConceptScore W2894791732C201995342 @default.
- W2894791732 hasConceptScore W2894791732C2780451532 @default.
- W2894791732 hasConceptScore W2894791732C33923547 @default.
- W2894791732 hasConceptScore W2894791732C36503486 @default.
- W2894791732 hasConceptScore W2894791732C38652104 @default.
- W2894791732 hasConceptScore W2894791732C41008148 @default.
- W2894791732 hasConceptScore W2894791732C50644808 @default.
- W2894791732 hasConceptScore W2894791732C541664917 @default.
- W2894791732 hasLocation W28947917321 @default.
- W2894791732 hasOpenAccess W2894791732 @default.
- W2894791732 hasPrimaryLocation W28947917321 @default.
- W2894791732 hasRelatedWork W1502620665 @default.
- W2894791732 hasRelatedWork W2042378654 @default.
- W2894791732 hasRelatedWork W2471817886 @default.
- W2894791732 hasRelatedWork W2519761291 @default.
- W2894791732 hasRelatedWork W2768793959 @default.
- W2894791732 hasRelatedWork W2786906486 @default.
- W2894791732 hasRelatedWork W2865829684 @default.
- W2894791732 hasRelatedWork W2951200537 @default.
- W2894791732 hasRelatedWork W2968390691 @default.