Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894799553> ?p ?o ?g. }
- W2894799553 endingPage "215010" @default.
- W2894799553 startingPage "215010" @default.
- W2894799553 abstract "PET images commonly suffer from the high noise level and poor signal-to-noise ratio (SNR), thus adversely impacting lesion detectability and quantitative accuracy. In this work, a novel hybrid dual-domain PET denoising approach is proposed, which combines the advantages of both spatial and transform domain filtering to preserve image textures while minimizing quantification uncertainty. Spatial domain denoising techniques excel at preserving high-contrast patterns compared to transform domain filters, which perform well in recovering low-contrast details normally smoothed out by spatial domain filters. For spatial domain filtering, the non-local mean algorithm was chosen owing to its performance in denoising high-contrast features whereas multi-scale curvelet denoising was exploited for the transform domain owing to its capability to recover small details. The proposed hybrid method was compared to conventional post-reconstruction Gaussian and edge preserving bilateral filters. Computer simulations of a thorax phantom containing three small lesions, experimental measurements using the Jaszczak phantom and clinical whole-body PET/CT studies were used to evaluate the performance of the proposed PET denoising technique. The proposed hybrid filter increased the SNR from 8.0 (non-filtered PET image) to 39.3 for small lesions in the computerized thorax phantom, while Gaussian and bilateral filtering led to SNRs of 23.3 and 24.4, respectively. For the experimental Jaszczak phantom, the contrast-to-noise ratio (CNR) improved from 10.84 when using Gaussian smoothing to 14.02 and 19.39 using the bilateral and the proposed hybrid filters, respectively. The clinical studies further demonstrated the superior performance of the hybrid method, yielding a quantification change (the original noisy OSEM image was used as reference in the absence of ground truth) in malignant lesions of −2.4% compared to −11.9% and −6.6% achieved using Gaussian and bilateral filters, respectively. In some cases, the visual difference between the bilateral and hybrid filtered images is not substantial; however the improved CNR score from 11.3 by OSEM to 17.1 and 21.8 by bilateral to the hybrid filtering, respectively, demonstrates the overall gain achieved by the hybrid approach. The proposed hybrid algorithm improved the contrast, SNR and quantitative accuracy compared to Gaussian and bilateral approaches, and can be utilized as an alternative post-reconstruction filter in clinical PET/CT imaging." @default.
- W2894799553 created "2018-10-12" @default.
- W2894799553 creator A5007891293 @default.
- W2894799553 creator A5039181443 @default.
- W2894799553 date "2018-10-24" @default.
- W2894799553 modified "2023-09-25" @default.
- W2894799553 title "Improvement of image quality in PET using post-reconstruction hybrid spatial-frequency domain filtering" @default.
- W2894799553 cites W1978153144 @default.
- W2894799553 cites W1979636335 @default.
- W2894799553 cites W1990309165 @default.
- W2894799553 cites W1995194116 @default.
- W2894799553 cites W2021594562 @default.
- W2894799553 cites W2037922117 @default.
- W2894799553 cites W2041522848 @default.
- W2894799553 cites W2048089363 @default.
- W2894799553 cites W2062814818 @default.
- W2894799553 cites W2070281674 @default.
- W2894799553 cites W2097061348 @default.
- W2894799553 cites W2097073572 @default.
- W2894799553 cites W2109991658 @default.
- W2894799553 cites W2111203235 @default.
- W2894799553 cites W2115563908 @default.
- W2894799553 cites W2118636555 @default.
- W2894799553 cites W2125335080 @default.
- W2894799553 cites W2132680427 @default.
- W2894799553 cites W2133257322 @default.
- W2894799553 cites W2134152745 @default.
- W2894799553 cites W2144035325 @default.
- W2894799553 cites W2150134853 @default.
- W2894799553 cites W2152047336 @default.
- W2894799553 cites W2156242833 @default.
- W2894799553 cites W2158940042 @default.
- W2894799553 cites W2160216597 @default.
- W2894799553 cites W2163168659 @default.
- W2894799553 cites W2321904707 @default.
- W2894799553 cites W2331873106 @default.
- W2894799553 cites W2463594856 @default.
- W2894799553 cites W2515162663 @default.
- W2894799553 cites W2620352836 @default.
- W2894799553 cites W596558207 @default.
- W2894799553 doi "https://doi.org/10.1088/1361-6560/aae573" @default.
- W2894799553 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30272565" @default.
- W2894799553 hasPublicationYear "2018" @default.
- W2894799553 type Work @default.
- W2894799553 sameAs 2894799553 @default.
- W2894799553 citedByCount "45" @default.
- W2894799553 countsByYear W28947995532018 @default.
- W2894799553 countsByYear W28947995532019 @default.
- W2894799553 countsByYear W28947995532020 @default.
- W2894799553 countsByYear W28947995532021 @default.
- W2894799553 countsByYear W28947995532022 @default.
- W2894799553 countsByYear W28947995532023 @default.
- W2894799553 crossrefType "journal-article" @default.
- W2894799553 hasAuthorship W2894799553A5007891293 @default.
- W2894799553 hasAuthorship W2894799553A5039181443 @default.
- W2894799553 hasBestOaLocation W28947995532 @default.
- W2894799553 hasConcept C101453961 @default.
- W2894799553 hasConcept C104293457 @default.
- W2894799553 hasConcept C104317376 @default.
- W2894799553 hasConcept C106131492 @default.
- W2894799553 hasConcept C106430172 @default.
- W2894799553 hasConcept C115961682 @default.
- W2894799553 hasConcept C120665830 @default.
- W2894799553 hasConcept C121332964 @default.
- W2894799553 hasConcept C121475858 @default.
- W2894799553 hasConcept C141379421 @default.
- W2894799553 hasConcept C153180895 @default.
- W2894799553 hasConcept C154945302 @default.
- W2894799553 hasConcept C156140930 @default.
- W2894799553 hasConcept C163294075 @default.
- W2894799553 hasConcept C163716315 @default.
- W2894799553 hasConcept C2776502983 @default.
- W2894799553 hasConcept C2983327147 @default.
- W2894799553 hasConcept C31972630 @default.
- W2894799553 hasConcept C3770464 @default.
- W2894799553 hasConcept C41008148 @default.
- W2894799553 hasConcept C55020928 @default.
- W2894799553 hasConcept C62520636 @default.
- W2894799553 hasConcept C65892221 @default.
- W2894799553 hasConcept C9417928 @default.
- W2894799553 hasConcept C99498987 @default.
- W2894799553 hasConceptScore W2894799553C101453961 @default.
- W2894799553 hasConceptScore W2894799553C104293457 @default.
- W2894799553 hasConceptScore W2894799553C104317376 @default.
- W2894799553 hasConceptScore W2894799553C106131492 @default.
- W2894799553 hasConceptScore W2894799553C106430172 @default.
- W2894799553 hasConceptScore W2894799553C115961682 @default.
- W2894799553 hasConceptScore W2894799553C120665830 @default.
- W2894799553 hasConceptScore W2894799553C121332964 @default.
- W2894799553 hasConceptScore W2894799553C121475858 @default.
- W2894799553 hasConceptScore W2894799553C141379421 @default.
- W2894799553 hasConceptScore W2894799553C153180895 @default.
- W2894799553 hasConceptScore W2894799553C154945302 @default.
- W2894799553 hasConceptScore W2894799553C156140930 @default.
- W2894799553 hasConceptScore W2894799553C163294075 @default.
- W2894799553 hasConceptScore W2894799553C163716315 @default.
- W2894799553 hasConceptScore W2894799553C2776502983 @default.
- W2894799553 hasConceptScore W2894799553C2983327147 @default.