Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894800974> ?p ?o ?g. }
- W2894800974 endingPage "147" @default.
- W2894800974 startingPage "124" @default.
- W2894800974 abstract "With the growing threat of cyber and cyber-physical attacks against automobiles, drones, ships, driverless pods and other vehicles, there is also a growing need for intrusion detection approaches that can facilitate defence against such threats. Vehicles tend to have limited processing resources and are energy-constrained. So, any security provision needs to abide by these limitations. At the same time, attacks against vehicles are very rare, often making knowledge-based intrusion detection systems less practical than behaviour-based ones, which is the reverse of what is seen in conventional computing systems. Furthermore, vehicle design and implementation can differ wildly between different types or different manufacturers, which can lead to intrusion detection designs that are vehicle-specific. Equally importantly, vehicles are practically defined by their ability to move, autonomously or not. Movement, as well as other physical manifestations of their operation may allow cyber security breaches to lead to physical damage, but can also be an opportunity for detection. For example, physical sensing can contribute to more accurate or more rapid intrusion detection through observation and analysis of physical manifestations of a security breach. This paper presents a classification and survey of intrusion detection systems designed and evaluated specifically on vehicles and networks of vehicles. Its aim is to help identify existing techniques that can be adopted in the industry, along with their advantages and disadvantages, as well as to identify gaps in the literature, which are attractive and highly meaningful areas of future research." @default.
- W2894800974 created "2018-10-12" @default.
- W2894800974 creator A5002235666 @default.
- W2894800974 creator A5029697237 @default.
- W2894800974 creator A5050756789 @default.
- W2894800974 creator A5079940220 @default.
- W2894800974 creator A5089908689 @default.
- W2894800974 creator A5090517118 @default.
- W2894800974 date "2019-03-01" @default.
- W2894800974 modified "2023-10-16" @default.
- W2894800974 title "A taxonomy and survey of cyber-physical intrusion detection approaches for vehicles" @default.
- W2894800974 cites W1489073918 @default.
- W2894800974 cites W1550526895 @default.
- W2894800974 cites W1981981851 @default.
- W2894800974 cites W1982466846 @default.
- W2894800974 cites W1987204464 @default.
- W2894800974 cites W1988976514 @default.
- W2894800974 cites W2006528490 @default.
- W2894800974 cites W2007716404 @default.
- W2894800974 cites W2028397517 @default.
- W2894800974 cites W2041439392 @default.
- W2894800974 cites W2064018461 @default.
- W2894800974 cites W2074074366 @default.
- W2894800974 cites W2080620215 @default.
- W2894800974 cites W2089255914 @default.
- W2894800974 cites W2105442001 @default.
- W2894800974 cites W2123830234 @default.
- W2894800974 cites W2125905417 @default.
- W2894800974 cites W2132107948 @default.
- W2894800974 cites W2161630727 @default.
- W2894800974 cites W2164033372 @default.
- W2894800974 cites W2234307379 @default.
- W2894800974 cites W2342408547 @default.
- W2894800974 cites W2495809881 @default.
- W2894800974 cites W2498575077 @default.
- W2894800974 cites W2511642541 @default.
- W2894800974 cites W2514077746 @default.
- W2894800974 cites W2584351053 @default.
- W2894800974 cites W2592386911 @default.
- W2894800974 cites W2595545394 @default.
- W2894800974 cites W2759891682 @default.
- W2894800974 cites W2771179281 @default.
- W2894800974 cites W2783957729 @default.
- W2894800974 cites W2784041885 @default.
- W2894800974 cites W877147306 @default.
- W2894800974 cites W2011778831 @default.
- W2894800974 doi "https://doi.org/10.1016/j.adhoc.2018.10.002" @default.
- W2894800974 hasPublicationYear "2019" @default.
- W2894800974 type Work @default.
- W2894800974 sameAs 2894800974 @default.
- W2894800974 citedByCount "76" @default.
- W2894800974 countsByYear W28948009742019 @default.
- W2894800974 countsByYear W28948009742020 @default.
- W2894800974 countsByYear W28948009742021 @default.
- W2894800974 countsByYear W28948009742022 @default.
- W2894800974 countsByYear W28948009742023 @default.
- W2894800974 crossrefType "journal-article" @default.
- W2894800974 hasAuthorship W2894800974A5002235666 @default.
- W2894800974 hasAuthorship W2894800974A5029697237 @default.
- W2894800974 hasAuthorship W2894800974A5050756789 @default.
- W2894800974 hasAuthorship W2894800974A5079940220 @default.
- W2894800974 hasAuthorship W2894800974A5089908689 @default.
- W2894800974 hasAuthorship W2894800974A5090517118 @default.
- W2894800974 hasBestOaLocation W28948009742 @default.
- W2894800974 hasConcept C111919701 @default.
- W2894800974 hasConcept C127313418 @default.
- W2894800974 hasConcept C158251709 @default.
- W2894800974 hasConcept C17409809 @default.
- W2894800974 hasConcept C179768478 @default.
- W2894800974 hasConcept C18903297 @default.
- W2894800974 hasConcept C205649164 @default.
- W2894800974 hasConcept C2522767166 @default.
- W2894800974 hasConcept C35525427 @default.
- W2894800974 hasConcept C38652104 @default.
- W2894800974 hasConcept C41008148 @default.
- W2894800974 hasConcept C58642233 @default.
- W2894800974 hasConcept C86803240 @default.
- W2894800974 hasConceptScore W2894800974C111919701 @default.
- W2894800974 hasConceptScore W2894800974C127313418 @default.
- W2894800974 hasConceptScore W2894800974C158251709 @default.
- W2894800974 hasConceptScore W2894800974C17409809 @default.
- W2894800974 hasConceptScore W2894800974C179768478 @default.
- W2894800974 hasConceptScore W2894800974C18903297 @default.
- W2894800974 hasConceptScore W2894800974C205649164 @default.
- W2894800974 hasConceptScore W2894800974C2522767166 @default.
- W2894800974 hasConceptScore W2894800974C35525427 @default.
- W2894800974 hasConceptScore W2894800974C38652104 @default.
- W2894800974 hasConceptScore W2894800974C41008148 @default.
- W2894800974 hasConceptScore W2894800974C58642233 @default.
- W2894800974 hasConceptScore W2894800974C86803240 @default.
- W2894800974 hasFunder F4320335254 @default.
- W2894800974 hasLocation W28948009741 @default.
- W2894800974 hasLocation W28948009742 @default.
- W2894800974 hasLocation W28948009743 @default.
- W2894800974 hasOpenAccess W2894800974 @default.
- W2894800974 hasPrimaryLocation W28948009741 @default.
- W2894800974 hasRelatedWork W202614571 @default.
- W2894800974 hasRelatedWork W2136041290 @default.