Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894820601> ?p ?o ?g. }
- W2894820601 endingPage "310" @default.
- W2894820601 startingPage "297" @default.
- W2894820601 abstract "On-line near infrared (NIR) spectroscopic analysis systems play an important role in assessing the quality of sugarcane in Australia. As quality measures are used to calculate the payment made to growers, it is imperative that NIR models are both accurate and robust. Machine learning and non-linear modelling approaches have been explored as methods for developing improved NIR models in a variety of industrial settings, yet there has been little research into their application to cane quality measures. The objective of this paper was to compare chemometric models of commercial cane sugar (CCS) based on four calibration techniques. CCS was estimated using partial least squares regression (PLS), support vector regression (SVR), artificial neural networks (ANNs) and gradient boosted trees (GBTs). Model performance was assessed on an independent validation data set using root mean square error of prediction (RMSEP) and r 2 values. SVR (RMSEP = 0.37%; r 2 = 0.92) and ANN (RMSEP = 0.36%; r 2 = 0.93) performed similarly to PLS (RMSEP = 0.37%; r 2 = 0.92) on the validation data set, while GBT exhibited a much lower skill (RMSEP = 0.51%; r 2 = 0.85). Analysis of important wavelengths in each model showed that PLS regression, SVR and ANN techniques emphasized the importance of similar spectral regions. Future research should consider testing model robustness over seasons and/or regions. Comparisons of chemometric models should consider reporting variable importance as a way of understanding how models use spectral information." @default.
- W2894820601 created "2018-10-12" @default.
- W2894820601 creator A5028358283 @default.
- W2894820601 creator A5047992870 @default.
- W2894820601 creator A5052529196 @default.
- W2894820601 creator A5083393613 @default.
- W2894820601 creator A5085651684 @default.
- W2894820601 date "2018-10-01" @default.
- W2894820601 modified "2023-10-02" @default.
- W2894820601 title "A comparison of non-linear regression methods for improved on-line near infrared spectroscopic analysis of a sugarcane quality measure" @default.
- W2894820601 cites W1496317909 @default.
- W2894820601 cites W1513618424 @default.
- W2894820601 cites W1678356000 @default.
- W2894820601 cites W1969329149 @default.
- W2894820601 cites W1973273412 @default.
- W2894820601 cites W1983277056 @default.
- W2894820601 cites W1987428902 @default.
- W2894820601 cites W1996195892 @default.
- W2894820601 cites W2000055701 @default.
- W2894820601 cites W2003167996 @default.
- W2894820601 cites W2007808016 @default.
- W2894820601 cites W2009957961 @default.
- W2894820601 cites W2014736305 @default.
- W2894820601 cites W2029372760 @default.
- W2894820601 cites W2039768055 @default.
- W2894820601 cites W2054603652 @default.
- W2894820601 cites W2055088180 @default.
- W2894820601 cites W2055576216 @default.
- W2894820601 cites W2055817716 @default.
- W2894820601 cites W2070493638 @default.
- W2894820601 cites W2073503722 @default.
- W2894820601 cites W2084675128 @default.
- W2894820601 cites W2085917613 @default.
- W2894820601 cites W2090154615 @default.
- W2894820601 cites W2094298149 @default.
- W2894820601 cites W2094475447 @default.
- W2894820601 cites W2106100979 @default.
- W2894820601 cites W2108488321 @default.
- W2894820601 cites W2109606373 @default.
- W2894820601 cites W2140196823 @default.
- W2894820601 cites W2169053895 @default.
- W2894820601 cites W2256170202 @default.
- W2894820601 cites W2617070166 @default.
- W2894820601 cites W2749469484 @default.
- W2894820601 cites W2766300505 @default.
- W2894820601 cites W2775261694 @default.
- W2894820601 cites W2787334870 @default.
- W2894820601 cites W2911964244 @default.
- W2894820601 cites W4239510810 @default.
- W2894820601 cites W4243597420 @default.
- W2894820601 cites W856051193 @default.
- W2894820601 doi "https://doi.org/10.1177/0967033518802448" @default.
- W2894820601 hasPublicationYear "2018" @default.
- W2894820601 type Work @default.
- W2894820601 sameAs 2894820601 @default.
- W2894820601 citedByCount "11" @default.
- W2894820601 countsByYear W28948206012020 @default.
- W2894820601 countsByYear W28948206012021 @default.
- W2894820601 countsByYear W28948206012022 @default.
- W2894820601 countsByYear W28948206012023 @default.
- W2894820601 crossrefType "journal-article" @default.
- W2894820601 hasAuthorship W2894820601A5028358283 @default.
- W2894820601 hasAuthorship W2894820601A5047992870 @default.
- W2894820601 hasAuthorship W2894820601A5052529196 @default.
- W2894820601 hasAuthorship W2894820601A5083393613 @default.
- W2894820601 hasAuthorship W2894820601A5085651684 @default.
- W2894820601 hasConcept C104317684 @default.
- W2894820601 hasConcept C105795698 @default.
- W2894820601 hasConcept C121332964 @default.
- W2894820601 hasConcept C12267149 @default.
- W2894820601 hasConcept C139945424 @default.
- W2894820601 hasConcept C152877465 @default.
- W2894820601 hasConcept C154945302 @default.
- W2894820601 hasConcept C165838908 @default.
- W2894820601 hasConcept C185592680 @default.
- W2894820601 hasConcept C22354355 @default.
- W2894820601 hasConcept C33923547 @default.
- W2894820601 hasConcept C41008148 @default.
- W2894820601 hasConcept C43571822 @default.
- W2894820601 hasConcept C48921125 @default.
- W2894820601 hasConcept C50644808 @default.
- W2894820601 hasConcept C55493867 @default.
- W2894820601 hasConcept C62520636 @default.
- W2894820601 hasConcept C63479239 @default.
- W2894820601 hasConcept C83546350 @default.
- W2894820601 hasConceptScore W2894820601C104317684 @default.
- W2894820601 hasConceptScore W2894820601C105795698 @default.
- W2894820601 hasConceptScore W2894820601C121332964 @default.
- W2894820601 hasConceptScore W2894820601C12267149 @default.
- W2894820601 hasConceptScore W2894820601C139945424 @default.
- W2894820601 hasConceptScore W2894820601C152877465 @default.
- W2894820601 hasConceptScore W2894820601C154945302 @default.
- W2894820601 hasConceptScore W2894820601C165838908 @default.
- W2894820601 hasConceptScore W2894820601C185592680 @default.
- W2894820601 hasConceptScore W2894820601C22354355 @default.
- W2894820601 hasConceptScore W2894820601C33923547 @default.
- W2894820601 hasConceptScore W2894820601C41008148 @default.
- W2894820601 hasConceptScore W2894820601C43571822 @default.