Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894825269> ?p ?o ?g. }
- W2894825269 endingPage "116" @default.
- W2894825269 startingPage "106" @default.
- W2894825269 abstract "As a branch of frequent pattern mining, the task-oriented pattern mining has received increasing attention due to its broad application scenarios. The lexicographic subset tree based algorithm and the multiobjective evolutionary algorithm are two effective approaches for finding the most frequent and complete pattern in task-oriented applications. However, both suffer from heavy computational cost since their runtime increases rapidly as the transaction dataset is scaled up. To address this issue, this paper regards the task-oriented pattern mining as a data-driven optimization problem and solves it by using a surrogate-assisted multiobjective evolutionary algorithm. Based on the framework of our previous multiobjective evolutionary algorithm for task-oriented pattern mining, the proposed algorithm estimates the objective values of most solutions using an ensemble of surrogates instead of the real objective functions, thereby highly improving the efficiency of the algorithm. Experimental results on three task-oriented applications indicate that the proposed algorithm has better efficiency than state-of-the-art algorithms." @default.
- W2894825269 created "2018-10-12" @default.
- W2894825269 creator A5025153992 @default.
- W2894825269 creator A5028634381 @default.
- W2894825269 creator A5038215318 @default.
- W2894825269 creator A5058755242 @default.
- W2894825269 creator A5080798381 @default.
- W2894825269 date "2019-04-01" @default.
- W2894825269 modified "2023-10-11" @default.
- W2894825269 title "A Surrogate-Assisted Multiobjective Evolutionary Algorithm for Large-Scale Task-Oriented Pattern Mining" @default.
- W2894825269 cites W1514363319 @default.
- W2894825269 cites W1548010335 @default.
- W2894825269 cites W1553573873 @default.
- W2894825269 cites W1965698293 @default.
- W2894825269 cites W1965772894 @default.
- W2894825269 cites W1967157470 @default.
- W2894825269 cites W1976273914 @default.
- W2894825269 cites W1986130186 @default.
- W2894825269 cites W2000503034 @default.
- W2894825269 cites W2001240895 @default.
- W2894825269 cites W2011174137 @default.
- W2894825269 cites W2016014758 @default.
- W2894825269 cites W2020320008 @default.
- W2894825269 cites W2022485595 @default.
- W2894825269 cites W2042614763 @default.
- W2894825269 cites W2057427819 @default.
- W2894825269 cites W2059303863 @default.
- W2894825269 cites W2071694551 @default.
- W2894825269 cites W2085197225 @default.
- W2894825269 cites W2105245738 @default.
- W2894825269 cites W2111526171 @default.
- W2894825269 cites W2126105956 @default.
- W2894825269 cites W2136918060 @default.
- W2894825269 cites W2138685851 @default.
- W2894825269 cites W2140802386 @default.
- W2894825269 cites W2143381319 @default.
- W2894825269 cites W2153654820 @default.
- W2894825269 cites W2155035377 @default.
- W2894825269 cites W2161055009 @default.
- W2894825269 cites W2166559705 @default.
- W2894825269 cites W2166785535 @default.
- W2894825269 cites W2317808322 @default.
- W2894825269 cites W2329749247 @default.
- W2894825269 cites W2336467679 @default.
- W2894825269 cites W2342632173 @default.
- W2894825269 cites W2419199839 @default.
- W2894825269 cites W2485092703 @default.
- W2894825269 cites W2510493362 @default.
- W2894825269 cites W2517882440 @default.
- W2894825269 cites W2546299924 @default.
- W2894825269 cites W2738689687 @default.
- W2894825269 cites W2751605210 @default.
- W2894825269 cites W2758271972 @default.
- W2894825269 cites W2764251381 @default.
- W2894825269 cites W2772079570 @default.
- W2894825269 cites W2791362611 @default.
- W2894825269 cites W2895700336 @default.
- W2894825269 cites W4235896277 @default.
- W2894825269 cites W4252115301 @default.
- W2894825269 doi "https://doi.org/10.1109/tetci.2018.2872055" @default.
- W2894825269 hasPublicationYear "2019" @default.
- W2894825269 type Work @default.
- W2894825269 sameAs 2894825269 @default.
- W2894825269 citedByCount "29" @default.
- W2894825269 countsByYear W28948252692020 @default.
- W2894825269 countsByYear W28948252692021 @default.
- W2894825269 countsByYear W28948252692022 @default.
- W2894825269 countsByYear W28948252692023 @default.
- W2894825269 crossrefType "journal-article" @default.
- W2894825269 hasAuthorship W2894825269A5025153992 @default.
- W2894825269 hasAuthorship W2894825269A5028634381 @default.
- W2894825269 hasAuthorship W2894825269A5038215318 @default.
- W2894825269 hasAuthorship W2894825269A5058755242 @default.
- W2894825269 hasAuthorship W2894825269A5080798381 @default.
- W2894825269 hasConcept C11413529 @default.
- W2894825269 hasConcept C114614502 @default.
- W2894825269 hasConcept C119857082 @default.
- W2894825269 hasConcept C121332964 @default.
- W2894825269 hasConcept C124101348 @default.
- W2894825269 hasConcept C127413603 @default.
- W2894825269 hasConcept C154945302 @default.
- W2894825269 hasConcept C159149176 @default.
- W2894825269 hasConcept C159254197 @default.
- W2894825269 hasConcept C201995342 @default.
- W2894825269 hasConcept C2778755073 @default.
- W2894825269 hasConcept C2780451532 @default.
- W2894825269 hasConcept C33923547 @default.
- W2894825269 hasConcept C41008148 @default.
- W2894825269 hasConcept C62520636 @default.
- W2894825269 hasConcept C68781425 @default.
- W2894825269 hasConceptScore W2894825269C11413529 @default.
- W2894825269 hasConceptScore W2894825269C114614502 @default.
- W2894825269 hasConceptScore W2894825269C119857082 @default.
- W2894825269 hasConceptScore W2894825269C121332964 @default.
- W2894825269 hasConceptScore W2894825269C124101348 @default.
- W2894825269 hasConceptScore W2894825269C127413603 @default.
- W2894825269 hasConceptScore W2894825269C154945302 @default.
- W2894825269 hasConceptScore W2894825269C159149176 @default.