Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894825906> ?p ?o ?g. }
- W2894825906 endingPage "1662" @default.
- W2894825906 startingPage "1649" @default.
- W2894825906 abstract "The carbonation of ultramafic rocks, including tailings from ultramafic-hosted ore deposits, can be used to remove CO2 from the atmosphere and store it safely within minerals over geologic timescales. Quantitative X-ray diffraction (XRD) using Rietveld refinements can be employed to estimate the amount of carbon sequestered by carbonate minerals that form as a result of weathering of ultramafic rocks. However, the presence of structurally disordered phases such as serpentine minerals, which are common in ultramafic ore bodies such as at the Woodsreef chrysotile mine (New South Wales, Australia), results in samples that cannot be analyzed using typical Rietveld refinement strategies. Previous investigations of carbon sequestration at Woodsreef and other ultramafic mine sites typically used modified Rietveld refinement methods that apply structureless pattern fitting for disordered phases; however, no detailed comparison of the accuracy (or precision) of these methods for carbon accounting has yet been attempted, making it difficult to determine the most appropriate analysis method. Such an analysis would need to test whether some methods more accurately quantify the abundances of certain minerals, such as pyroaurite [Mg6Fe23+ (CO3)(OH)16·4H2O] and other hydrotalcite group minerals, which suffer from severe preferred orientation and may play an important role in carbon sequestration at some mines. Here, we assess and compare the accuracy, and to a lesser extent the precision, of three different non-traditional Rietveld refinement methods for carbon accounting: (1) the PONKCS method, (2) the combined use of a Pawley fit for serpentine minerals and an internal standard (Pawley/internal standard method), and (3) the combined use of PONKCS and Pawley/internal standard methods. We examine which of these approaches represents the most accurate way to quantify the abundances of serpentine, pyroaurite, and other carbonate-bearing phases in a given sample. We demonstrate that by combining the PONKCS and Pawley/internal standard methods it is possible to quantify the abundances of disordered phases in a sample and to obtain an estimate of the amorphous content and any unaccounted intensity in an XRD pattern. Eight artificial tailings samples with known mineralogical compositions were prepared to reflect the natural variation found within the tailings at the Woodsreef chrysotile mine. Rietveld refinement results for the three methods were compared with the known compositions of each sample to calculate absolute and relative error values and to evaluate the accuracy of the three methods, including whether they produce systematic under- or overestimates of mineral abundance. Estimated standard deviations were also calculated during refinements; these values, which are a measure of precision, were not strongly affected by the choice of refinement method. The abundance of serpentine minerals is, however, systematically overestimated when using the PONKCS and Pawley/internal standard methods, and the abundances of minor phases (<10 wt%) are systematically underestimated using all three methods. Refined abundances for pyroaurite were found to be increasingly susceptible to error with increasing abundance, with an underestimation of 6.6 wt% absolute (60.6% relative) for a sample containing 10.9 wt% pyroaurite. These significant errors are due to difficulties in mitigating preferred orientation of hydrotalcite minerals during sample preparation as well as modeling its effects on XRD patterns. The abundances of hydromagnesite [Mg5(CO3)4(OH)2·4H2O], another important host for atmospheric CO2 during weathering of ultramafic rocks, was consistently underestimated by all three methods, with the highest underestimation being 3.7 wt% absolute (or 25.0% relative) for a sample containing 15.0 wt% hydromagnesite. Overall, the Pawley/internal standard method produced more accurate results than the PONKCS method, with an average bias per refinement of 6.7 wt%, compared with 10.3 wt% using PONKCS and 12.9 wt% for the combined PONKCS-Pawley/internal standard method. Furthermore, the values for the refined abundance of hydromagnesite obtained from refinements using the Pawley/internal standard method were significantly more accurate than those for refinements done with the PONKCS method, with relative errors typically <25% for hydromagnesite abundances between 5 and 15 wt%. The simpler and faster sample preparation makes the PONKCS method well-suited for rapid carbon accounting, for instance in the field using a portable XRD; however, the superior accuracy gained when using an internal standard make the Pawley/internal standard method the preferable means of undertaking a detailed laboratory-based study. As all three methods displayed an underestimation of carbonate phases, applying these methods to natural samples will likely produce an underestimate of hydromagnesite and hydrotalcite group mineral abundances. As such, crystallographic accounting strategies that use modified Rietveld refinement methods produce a conservative estimate of the carbon sequestered in minerals." @default.
- W2894825906 created "2018-10-12" @default.
- W2894825906 creator A5011973759 @default.
- W2894825906 creator A5028143373 @default.
- W2894825906 creator A5073578640 @default.
- W2894825906 date "2018-10-01" @default.
- W2894825906 modified "2023-10-13" @default.
- W2894825906 title "Comparison of Rietveld-compatible structureless fitting analysis methods for accurate quantification of carbon dioxide fixation in ultramafic mine tailings" @default.
- W2894825906 cites W1649401714 @default.
- W2894825906 cites W1843338631 @default.
- W2894825906 cites W1965337882 @default.
- W2894825906 cites W1973518565 @default.
- W2894825906 cites W1992475546 @default.
- W2894825906 cites W1997184367 @default.
- W2894825906 cites W1999577832 @default.
- W2894825906 cites W2001538406 @default.
- W2894825906 cites W2003798627 @default.
- W2894825906 cites W2009428627 @default.
- W2894825906 cites W2013235808 @default.
- W2894825906 cites W2015661959 @default.
- W2894825906 cites W2016260972 @default.
- W2894825906 cites W2022577681 @default.
- W2894825906 cites W2025696977 @default.
- W2894825906 cites W2026277606 @default.
- W2894825906 cites W2030298537 @default.
- W2894825906 cites W2033047492 @default.
- W2894825906 cites W2037180886 @default.
- W2894825906 cites W2039139356 @default.
- W2894825906 cites W2041360761 @default.
- W2894825906 cites W2041577694 @default.
- W2894825906 cites W2044328050 @default.
- W2894825906 cites W2047946709 @default.
- W2894825906 cites W2050339905 @default.
- W2894825906 cites W2053130684 @default.
- W2894825906 cites W2053562890 @default.
- W2894825906 cites W2069495732 @default.
- W2894825906 cites W2078324282 @default.
- W2894825906 cites W2079086890 @default.
- W2894825906 cites W2082584811 @default.
- W2894825906 cites W2095988320 @default.
- W2894825906 cites W2098108672 @default.
- W2894825906 cites W2104664138 @default.
- W2894825906 cites W2106176530 @default.
- W2894825906 cites W2112979714 @default.
- W2894825906 cites W2120726341 @default.
- W2894825906 cites W2136451159 @default.
- W2894825906 cites W2140739065 @default.
- W2894825906 cites W2141630701 @default.
- W2894825906 cites W2148962817 @default.
- W2894825906 cites W2149372751 @default.
- W2894825906 cites W2157244243 @default.
- W2894825906 cites W2157745353 @default.
- W2894825906 cites W2159680098 @default.
- W2894825906 cites W2160468086 @default.
- W2894825906 cites W2161594117 @default.
- W2894825906 cites W2164799993 @default.
- W2894825906 cites W2165530487 @default.
- W2894825906 cites W2167361611 @default.
- W2894825906 cites W2175269331 @default.
- W2894825906 cites W2252636846 @default.
- W2894825906 cites W2301516029 @default.
- W2894825906 cites W2317583729 @default.
- W2894825906 cites W2320021862 @default.
- W2894825906 cites W2324614750 @default.
- W2894825906 cites W2325449305 @default.
- W2894825906 cites W2326806776 @default.
- W2894825906 cites W2330046102 @default.
- W2894825906 cites W2332488232 @default.
- W2894825906 cites W2550962652 @default.
- W2894825906 cites W2621070700 @default.
- W2894825906 cites W2750077474 @default.
- W2894825906 cites W2752487915 @default.
- W2894825906 cites W2764276006 @default.
- W2894825906 cites W2789325428 @default.
- W2894825906 cites W2806183566 @default.
- W2894825906 cites W2982488390 @default.
- W2894825906 cites W4254612963 @default.
- W2894825906 doi "https://doi.org/10.2138/am-2018-6515" @default.
- W2894825906 hasPublicationYear "2018" @default.
- W2894825906 type Work @default.
- W2894825906 sameAs 2894825906 @default.
- W2894825906 citedByCount "16" @default.
- W2894825906 countsByYear W28948259062018 @default.
- W2894825906 countsByYear W28948259062020 @default.
- W2894825906 countsByYear W28948259062021 @default.
- W2894825906 countsByYear W28948259062022 @default.
- W2894825906 countsByYear W28948259062023 @default.
- W2894825906 crossrefType "journal-article" @default.
- W2894825906 hasAuthorship W2894825906A5011973759 @default.
- W2894825906 hasAuthorship W2894825906A5028143373 @default.
- W2894825906 hasAuthorship W2894825906A5073578640 @default.
- W2894825906 hasConcept C104779481 @default.
- W2894825906 hasConcept C115624301 @default.
- W2894825906 hasConcept C115645028 @default.
- W2894825906 hasConcept C120809312 @default.
- W2894825906 hasConcept C127313418 @default.
- W2894825906 hasConcept C140205800 @default.
- W2894825906 hasConcept C159985019 @default.