Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894835230> ?p ?o ?g. }
- W2894835230 endingPage "881" @default.
- W2894835230 startingPage "859" @default.
- W2894835230 abstract "Abstract. We present a numerical modeling investigation into the interactions between transient climate and vegetation cover with hillslope and detachment limited fluvial processes. Model simulations were designed to investigate topographic patterns and behavior resulting from changing climate and the associated changes in surface vegetation cover. The Landlab surface process model was modified to evaluate the effects of temporal variations in vegetation cover on hillslope diffusion and fluvial erosion. A suite of simulations were conducted to represent present-day climatic conditions and satellite derived vegetation cover at four different research areas in the Chilean Coastal Cordillera. These simulations included steady-state simulations as well as transient simulations with forcings in either climate or vegetation cover over millennial to million-year timescales. Two different transient variations in climate and vegetation cover including a step change in climate or vegetation were used, as well as 100 kyr oscillations over 5 Myr. We conducted eight different step-change simulations for positive and negative perturbations in either vegetation cover or climate and six simulations with oscillating transient forcings for either vegetation cover, climate, or oscillations in both vegetation cover and climate. Results indicate that the coupled influence of surface vegetation cover and mean annual precipitation shifts basin landforms towards a new steady state, with the magnitude of the change being highly sensitive to the initial vegetation and climate conditions of the basin. Dry, non-vegetated basins show higher magnitudes of adjustment than basins that are situated in wetter conditions with higher vegetation cover. For coupled conditions when surface vegetation cover and mean annual precipitation change simultaneously, the landscape response tends to be weaker. When vegetation cover and mean annual precipitation change independently from one another, higher magnitude shifts in topographic metrics are predicted. Changes in vegetation cover show a higher impact on topography for low initial surface cover values; however, for areas with high initial surface cover, the effect of changes in precipitation dominate the formation of landscapes. This study demonstrates the sensitivity of catchment characteristics to different transient forcings in vegetation cover and mean annual precipitation, with initial vegetation and climate conditions playing a crucial role." @default.
- W2894835230 created "2018-10-12" @default.
- W2894835230 creator A5013062960 @default.
- W2894835230 creator A5040794033 @default.
- W2894835230 creator A5047269096 @default.
- W2894835230 creator A5054786063 @default.
- W2894835230 creator A5076816357 @default.
- W2894835230 date "2018-10-08" @default.
- W2894835230 modified "2023-10-16" @default.
- W2894835230 title "Effect of changing vegetation and precipitation on denudation – Part 2: Predicted landscape response to transient climate and vegetation cover over millennial to million-year timescales" @default.
- W2894835230 cites W126100274 @default.
- W2894835230 cites W1517922049 @default.
- W2894835230 cites W154718451 @default.
- W2894835230 cites W1561691396 @default.
- W2894835230 cites W1663975594 @default.
- W2894835230 cites W1936611681 @default.
- W2894835230 cites W1961834987 @default.
- W2894835230 cites W1966744680 @default.
- W2894835230 cites W1967569914 @default.
- W2894835230 cites W1971955535 @default.
- W2894835230 cites W1972174982 @default.
- W2894835230 cites W1973364186 @default.
- W2894835230 cites W1974828561 @default.
- W2894835230 cites W1981651301 @default.
- W2894835230 cites W1981672833 @default.
- W2894835230 cites W1993999355 @default.
- W2894835230 cites W1994002804 @default.
- W2894835230 cites W2011479459 @default.
- W2894835230 cites W2024649846 @default.
- W2894835230 cites W2026079147 @default.
- W2894835230 cites W2028272247 @default.
- W2894835230 cites W2038163777 @default.
- W2894835230 cites W2040085089 @default.
- W2894835230 cites W2043480165 @default.
- W2894835230 cites W2048468546 @default.
- W2894835230 cites W2052564430 @default.
- W2894835230 cites W2054555266 @default.
- W2894835230 cites W2055752934 @default.
- W2894835230 cites W2060716647 @default.
- W2894835230 cites W2066109595 @default.
- W2894835230 cites W2072712492 @default.
- W2894835230 cites W2077212908 @default.
- W2894835230 cites W2082512786 @default.
- W2894835230 cites W2088799537 @default.
- W2894835230 cites W2092904088 @default.
- W2894835230 cites W2097647145 @default.
- W2894835230 cites W2109144921 @default.
- W2894835230 cites W2113895627 @default.
- W2894835230 cites W2121211164 @default.
- W2894835230 cites W2124588256 @default.
- W2894835230 cites W2127757098 @default.
- W2894835230 cites W2132355961 @default.
- W2894835230 cites W2135970474 @default.
- W2894835230 cites W2140131090 @default.
- W2894835230 cites W2140403093 @default.
- W2894835230 cites W2142130713 @default.
- W2894835230 cites W2144168304 @default.
- W2894835230 cites W2154209249 @default.
- W2894835230 cites W2162257339 @default.
- W2894835230 cites W2167969143 @default.
- W2894835230 cites W2169718134 @default.
- W2894835230 cites W2169976005 @default.
- W2894835230 cites W2180429818 @default.
- W2894835230 cites W2212957255 @default.
- W2894835230 cites W2311202588 @default.
- W2894835230 cites W2341315899 @default.
- W2894835230 cites W2509484910 @default.
- W2894835230 cites W2519717859 @default.
- W2894835230 cites W2587805819 @default.
- W2894835230 cites W2788888734 @default.
- W2894835230 cites W2789360247 @default.
- W2894835230 cites W2809515086 @default.
- W2894835230 cites W2859173377 @default.
- W2894835230 doi "https://doi.org/10.5194/esurf-6-859-2018" @default.
- W2894835230 hasPublicationYear "2018" @default.
- W2894835230 type Work @default.
- W2894835230 sameAs 2894835230 @default.
- W2894835230 citedByCount "28" @default.
- W2894835230 countsByYear W28948352302018 @default.
- W2894835230 countsByYear W28948352302019 @default.
- W2894835230 countsByYear W28948352302020 @default.
- W2894835230 countsByYear W28948352302021 @default.
- W2894835230 countsByYear W28948352302022 @default.
- W2894835230 countsByYear W28948352302023 @default.
- W2894835230 crossrefType "journal-article" @default.
- W2894835230 hasAuthorship W2894835230A5013062960 @default.
- W2894835230 hasAuthorship W2894835230A5040794033 @default.
- W2894835230 hasAuthorship W2894835230A5047269096 @default.
- W2894835230 hasAuthorship W2894835230A5054786063 @default.
- W2894835230 hasAuthorship W2894835230A5076816357 @default.
- W2894835230 hasBestOaLocation W28948352301 @default.
- W2894835230 hasConcept C100970517 @default.
- W2894835230 hasConcept C107054158 @default.
- W2894835230 hasConcept C109007969 @default.
- W2894835230 hasConcept C111368507 @default.
- W2894835230 hasConcept C112959462 @default.
- W2894835230 hasConcept C114793014 @default.
- W2894835230 hasConcept C127313418 @default.