Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894836443> ?p ?o ?g. }
- W2894836443 endingPage "280" @default.
- W2894836443 startingPage "264" @default.
- W2894836443 abstract "The present study examines simultaneous adsorption of ternary dyes such as rose bengal (RB), safranin O (SO) and malachite green (MG) from aqueous media on copper oxide nanoparticles immobilized on activated carbon (CuO-NPs-AC) in a batch system. To forecast and optimize the adsorption, artificial neural network (ANN) and response surface methodology (RSM) were utilized. The effect of various factors, e.g. dye concentration, sonication time, adsorbent dosage and pH on the adsorption process were evaluated through five level six factor central composite design (CCD) using RSM. Maximum removal efficiency of MG, SO and RB dyes were seen 94.26%, 71% and 76% under optimal operating conditions. The suggested quadratic models revealed good fit with the actual data. To testing the data, the coefficients of determination (R2) of 0.9976, 0.9971 and 0.9952 and Fisher F-values of 2048.92, 1660.95 and 926.84 were obtained for MG, SO and RB dyes, respectively. The same data were utilized to construct the ANN models. The results revealed that both models yielded high R2 values, while the RSM models were slightly more accurate in predictions as compared to ANN models for MG, SO and RB dyes removal. The equilibrium data followed the Langmuir isotherm model, although the rate of the adsorption process well fitted to pseudo-second-order kinetics. The maximum adsorption capacity of the CuO-NPs-AC for MG, SO and RB were found to be 212.79, 149.25 and 172.42 mg/g, respectively." @default.
- W2894836443 created "2018-10-12" @default.
- W2894836443 creator A5000196072 @default.
- W2894836443 creator A5011125861 @default.
- W2894836443 creator A5047644432 @default.
- W2894836443 creator A5056736089 @default.
- W2894836443 creator A5069937516 @default.
- W2894836443 date "2019-03-01" @default.
- W2894836443 modified "2023-10-01" @default.
- W2894836443 title "Optimization and modeling of simultaneous ultrasound-assisted adsorption of ternary dyes using copper oxide nanoparticles immobilized on activated carbon using response surface methodology and artificial neural network" @default.
- W2894836443 cites W1539462802 @default.
- W2894836443 cites W1810016140 @default.
- W2894836443 cites W1907320917 @default.
- W2894836443 cites W1922326932 @default.
- W2894836443 cites W1923796063 @default.
- W2894836443 cites W1968827772 @default.
- W2894836443 cites W1973847398 @default.
- W2894836443 cites W1978165159 @default.
- W2894836443 cites W1980864399 @default.
- W2894836443 cites W1983878125 @default.
- W2894836443 cites W1988282587 @default.
- W2894836443 cites W1990467009 @default.
- W2894836443 cites W1991830983 @default.
- W2894836443 cites W1993612803 @default.
- W2894836443 cites W1994549004 @default.
- W2894836443 cites W1994872041 @default.
- W2894836443 cites W1998548010 @default.
- W2894836443 cites W1999317415 @default.
- W2894836443 cites W2001257642 @default.
- W2894836443 cites W2003238791 @default.
- W2894836443 cites W2003648205 @default.
- W2894836443 cites W2009420486 @default.
- W2894836443 cites W2009789896 @default.
- W2894836443 cites W2010812522 @default.
- W2894836443 cites W2015214289 @default.
- W2894836443 cites W2015422804 @default.
- W2894836443 cites W2020159290 @default.
- W2894836443 cites W2021358274 @default.
- W2894836443 cites W2027909693 @default.
- W2894836443 cites W2028372058 @default.
- W2894836443 cites W2029378620 @default.
- W2894836443 cites W2030604224 @default.
- W2894836443 cites W2035123591 @default.
- W2894836443 cites W2035544747 @default.
- W2894836443 cites W2035657190 @default.
- W2894836443 cites W2039047060 @default.
- W2894836443 cites W2048504787 @default.
- W2894836443 cites W2049489052 @default.
- W2894836443 cites W2053623965 @default.
- W2894836443 cites W2059910836 @default.
- W2894836443 cites W2062700288 @default.
- W2894836443 cites W2069134412 @default.
- W2894836443 cites W2069988580 @default.
- W2894836443 cites W2076566455 @default.
- W2894836443 cites W2079235173 @default.
- W2894836443 cites W2080732471 @default.
- W2894836443 cites W2081612482 @default.
- W2894836443 cites W2086962726 @default.
- W2894836443 cites W2088453570 @default.
- W2894836443 cites W2089122158 @default.
- W2894836443 cites W2091777721 @default.
- W2894836443 cites W2093121893 @default.
- W2894836443 cites W2099753445 @default.
- W2894836443 cites W2112017750 @default.
- W2894836443 cites W2112904709 @default.
- W2894836443 cites W2178316268 @default.
- W2894836443 cites W2195951920 @default.
- W2894836443 cites W2293657740 @default.
- W2894836443 cites W2314104404 @default.
- W2894836443 cites W2323328544 @default.
- W2894836443 cites W2341690451 @default.
- W2894836443 cites W2462226888 @default.
- W2894836443 cites W2508274757 @default.
- W2894836443 cites W2608285697 @default.
- W2894836443 cites W2615310300 @default.
- W2894836443 cites W2737260924 @default.
- W2894836443 cites W2758488230 @default.
- W2894836443 cites W2768029086 @default.
- W2894836443 cites W2773098014 @default.
- W2894836443 cites W2780558937 @default.
- W2894836443 cites W2806596768 @default.
- W2894836443 cites W4252403470 @default.
- W2894836443 doi "https://doi.org/10.1016/j.ultsonch.2018.10.007" @default.
- W2894836443 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30322764" @default.
- W2894836443 hasPublicationYear "2019" @default.
- W2894836443 type Work @default.
- W2894836443 sameAs 2894836443 @default.
- W2894836443 citedByCount "53" @default.
- W2894836443 countsByYear W28948364432019 @default.
- W2894836443 countsByYear W28948364432020 @default.
- W2894836443 countsByYear W28948364432021 @default.
- W2894836443 countsByYear W28948364432022 @default.
- W2894836443 countsByYear W28948364432023 @default.
- W2894836443 crossrefType "journal-article" @default.
- W2894836443 hasAuthorship W2894836443A5000196072 @default.
- W2894836443 hasAuthorship W2894836443A5011125861 @default.
- W2894836443 hasAuthorship W2894836443A5047644432 @default.
- W2894836443 hasAuthorship W2894836443A5056736089 @default.