Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894838211> ?p ?o ?g. }
- W2894838211 abstract "Discrete-space kinetic models, i.e., Markov state models, have emerged as powerful tools for reducing the complexity of trajectories generated from molecular dynamics simulations. These models require configuration-space representations that accurately characterize the relevant dynamics. Well-established, low-dimensional order parameters for constructing this representation have led to widespread application of Markov state models to study conformational dynamics in biomolecular systems. On the contrary, applications to characterize single-molecule diffusion processes have been scarce and typically employ system-specific, higher-dimensional order parameters to characterize the local solvation state of the molecule. In this work, we propose an automated method for generating a coarse configuration-space representation, using generic features of solvation structure---the coordination numbers about each particle. To overcome the inherent noisy behavior of these low-dimensional observables, we treat the features as indicators of an underlying, latent Markov process. The resulting hidden Markov models filter the trajectories of each feature into the most likely latent solvation state at each time step. The filtered trajectories are then used to construct a configuration-space discretization, which accurately describes the diffusion kinetics. The method is validated on a standard model for glassy liquids, where particle jumps between local cages determine the diffusion properties of the system. Not only do the resulting models provide quantitatively accurate characterizations of the diffusion constant, but they also reveal a mechanistic description of diffusive jumps, quantifying the heterogeneity of local diffusion." @default.
- W2894838211 created "2018-10-12" @default.
- W2894838211 creator A5002664162 @default.
- W2894838211 creator A5005535171 @default.
- W2894838211 creator A5055088553 @default.
- W2894838211 date "2019-01-08" @default.
- W2894838211 modified "2023-10-01" @default.
- W2894838211 title "Automated detection of many-particle solvation states for accurate characterizations of diffusion kinetics" @default.
- W2894838211 cites W1680797894 @default.
- W2894838211 cites W1965234283 @default.
- W2894838211 cites W1969025179 @default.
- W2894838211 cites W1971725855 @default.
- W2894838211 cites W1980782498 @default.
- W2894838211 cites W1989941945 @default.
- W2894838211 cites W1997108831 @default.
- W2894838211 cites W2012029966 @default.
- W2894838211 cites W2012912162 @default.
- W2894838211 cites W2013940604 @default.
- W2894838211 cites W2014048553 @default.
- W2894838211 cites W2017918436 @default.
- W2894838211 cites W2029778093 @default.
- W2894838211 cites W2035266068 @default.
- W2894838211 cites W2046898277 @default.
- W2894838211 cites W2053923359 @default.
- W2894838211 cites W2066643570 @default.
- W2894838211 cites W2086003265 @default.
- W2894838211 cites W2092204065 @default.
- W2894838211 cites W2103585025 @default.
- W2894838211 cites W2105594594 @default.
- W2894838211 cites W2133620840 @default.
- W2894838211 cites W2142384583 @default.
- W2894838211 cites W2146653401 @default.
- W2894838211 cites W2150593711 @default.
- W2894838211 cites W2194183050 @default.
- W2894838211 cites W2226825552 @default.
- W2894838211 cites W2254874908 @default.
- W2894838211 cites W2265661434 @default.
- W2894838211 cites W2313374938 @default.
- W2894838211 cites W2313545945 @default.
- W2894838211 cites W2320258968 @default.
- W2894838211 cites W2321305963 @default.
- W2894838211 cites W2332011222 @default.
- W2894838211 cites W2337942016 @default.
- W2894838211 cites W2342198251 @default.
- W2894838211 cites W2607384087 @default.
- W2894838211 cites W2732580318 @default.
- W2894838211 cites W2802119050 @default.
- W2894838211 cites W2883024553 @default.
- W2894838211 cites W3023733004 @default.
- W2894838211 cites W3100364255 @default.
- W2894838211 cites W4253512239 @default.
- W2894838211 doi "https://doi.org/10.1063/1.5064808" @default.
- W2894838211 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30646696" @default.
- W2894838211 hasPublicationYear "2019" @default.
- W2894838211 type Work @default.
- W2894838211 sameAs 2894838211 @default.
- W2894838211 citedByCount "3" @default.
- W2894838211 countsByYear W28948382112021 @default.
- W2894838211 countsByYear W28948382112022 @default.
- W2894838211 countsByYear W28948382112023 @default.
- W2894838211 crossrefType "journal-article" @default.
- W2894838211 hasAuthorship W2894838211A5002664162 @default.
- W2894838211 hasAuthorship W2894838211A5005535171 @default.
- W2894838211 hasAuthorship W2894838211A5055088553 @default.
- W2894838211 hasBestOaLocation W28948382112 @default.
- W2894838211 hasConcept C105795698 @default.
- W2894838211 hasConcept C119857082 @default.
- W2894838211 hasConcept C121332964 @default.
- W2894838211 hasConcept C121864883 @default.
- W2894838211 hasConcept C134306372 @default.
- W2894838211 hasConcept C148093993 @default.
- W2894838211 hasConcept C159886148 @default.
- W2894838211 hasConcept C17744445 @default.
- W2894838211 hasConcept C178790620 @default.
- W2894838211 hasConcept C185592680 @default.
- W2894838211 hasConcept C186060115 @default.
- W2894838211 hasConcept C199539241 @default.
- W2894838211 hasConcept C2776359362 @default.
- W2894838211 hasConcept C32909587 @default.
- W2894838211 hasConcept C33923547 @default.
- W2894838211 hasConcept C41008148 @default.
- W2894838211 hasConcept C69357855 @default.
- W2894838211 hasConcept C72434380 @default.
- W2894838211 hasConcept C73000952 @default.
- W2894838211 hasConcept C86803240 @default.
- W2894838211 hasConcept C94625758 @default.
- W2894838211 hasConcept C97355855 @default.
- W2894838211 hasConcept C98763669 @default.
- W2894838211 hasConceptScore W2894838211C105795698 @default.
- W2894838211 hasConceptScore W2894838211C119857082 @default.
- W2894838211 hasConceptScore W2894838211C121332964 @default.
- W2894838211 hasConceptScore W2894838211C121864883 @default.
- W2894838211 hasConceptScore W2894838211C134306372 @default.
- W2894838211 hasConceptScore W2894838211C148093993 @default.
- W2894838211 hasConceptScore W2894838211C159886148 @default.
- W2894838211 hasConceptScore W2894838211C17744445 @default.
- W2894838211 hasConceptScore W2894838211C178790620 @default.
- W2894838211 hasConceptScore W2894838211C185592680 @default.
- W2894838211 hasConceptScore W2894838211C186060115 @default.
- W2894838211 hasConceptScore W2894838211C199539241 @default.