Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894840947> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2894840947 abstract "Since road traffic is nowadays predominant, improving its safety, security and comfortability may have a significant positive impact on people’s lives. This objective requires suitable studies of traffic behavior, to help stakeholders in obtaining non-trivial information, understanding the traffic models and plan suitable actions. While, on one hand, the pervasiveness of georeferencing and mobile technologies allows us to know the position of relevant objects and track their routes, on the other hand the huge amounts of data to be handled, and the intrinsic complexity of road traffic, make this study quite difficult. Deep Neural Networks (NNs) are powerful models that have achieved excellent performance on many tasks. In this paper we propose a sequence-to-sequence (Seq2Seq) autoencoder able to detect anomalous routes and consisting of an encoder Long Short Term Memory (LSTM) mapping the input route to a vector of a fixed length representation, and then a decoder LSTM to decode back the input route. It was applied to the TRAP2017 dataset freely available from the Italian National Police." @default.
- W2894840947 created "2018-10-12" @default.
- W2894840947 creator A5047232379 @default.
- W2894840947 creator A5068783500 @default.
- W2894840947 date "2018-01-01" @default.
- W2894840947 modified "2023-09-27" @default.
- W2894840947 title "Unsupervised LSTMs-based Learning for Anomaly Detection in Highway Traffic Data" @default.
- W2894840947 cites W2036785686 @default.
- W2894840947 cites W2064675550 @default.
- W2894840947 cites W2157331557 @default.
- W2894840947 cites W2790462408 @default.
- W2894840947 cites W4238907183 @default.
- W2894840947 doi "https://doi.org/10.1007/978-3-030-01851-1_27" @default.
- W2894840947 hasPublicationYear "2018" @default.
- W2894840947 type Work @default.
- W2894840947 sameAs 2894840947 @default.
- W2894840947 citedByCount "1" @default.
- W2894840947 countsByYear W28948409472020 @default.
- W2894840947 crossrefType "book-chapter" @default.
- W2894840947 hasAuthorship W2894840947A5047232379 @default.
- W2894840947 hasAuthorship W2894840947A5068783500 @default.
- W2894840947 hasConcept C101738243 @default.
- W2894840947 hasConcept C108583219 @default.
- W2894840947 hasConcept C111919701 @default.
- W2894840947 hasConcept C118505674 @default.
- W2894840947 hasConcept C124101348 @default.
- W2894840947 hasConcept C147168706 @default.
- W2894840947 hasConcept C154945302 @default.
- W2894840947 hasConcept C17744445 @default.
- W2894840947 hasConcept C199539241 @default.
- W2894840947 hasConcept C2776359362 @default.
- W2894840947 hasConcept C2778112365 @default.
- W2894840947 hasConcept C41008148 @default.
- W2894840947 hasConcept C50644808 @default.
- W2894840947 hasConcept C54355233 @default.
- W2894840947 hasConcept C739882 @default.
- W2894840947 hasConcept C79403827 @default.
- W2894840947 hasConcept C86803240 @default.
- W2894840947 hasConcept C89992363 @default.
- W2894840947 hasConcept C94625758 @default.
- W2894840947 hasConceptScore W2894840947C101738243 @default.
- W2894840947 hasConceptScore W2894840947C108583219 @default.
- W2894840947 hasConceptScore W2894840947C111919701 @default.
- W2894840947 hasConceptScore W2894840947C118505674 @default.
- W2894840947 hasConceptScore W2894840947C124101348 @default.
- W2894840947 hasConceptScore W2894840947C147168706 @default.
- W2894840947 hasConceptScore W2894840947C154945302 @default.
- W2894840947 hasConceptScore W2894840947C17744445 @default.
- W2894840947 hasConceptScore W2894840947C199539241 @default.
- W2894840947 hasConceptScore W2894840947C2776359362 @default.
- W2894840947 hasConceptScore W2894840947C2778112365 @default.
- W2894840947 hasConceptScore W2894840947C41008148 @default.
- W2894840947 hasConceptScore W2894840947C50644808 @default.
- W2894840947 hasConceptScore W2894840947C54355233 @default.
- W2894840947 hasConceptScore W2894840947C739882 @default.
- W2894840947 hasConceptScore W2894840947C79403827 @default.
- W2894840947 hasConceptScore W2894840947C86803240 @default.
- W2894840947 hasConceptScore W2894840947C89992363 @default.
- W2894840947 hasConceptScore W2894840947C94625758 @default.
- W2894840947 hasLocation W28948409471 @default.
- W2894840947 hasOpenAccess W2894840947 @default.
- W2894840947 hasPrimaryLocation W28948409471 @default.
- W2894840947 hasRelatedWork W2175388903 @default.
- W2894840947 hasRelatedWork W2889969930 @default.
- W2894840947 hasRelatedWork W2896198671 @default.
- W2894840947 hasRelatedWork W2902753153 @default.
- W2894840947 hasRelatedWork W2917388040 @default.
- W2894840947 hasRelatedWork W2951955154 @default.
- W2894840947 hasRelatedWork W2953231656 @default.
- W2894840947 hasRelatedWork W2971381425 @default.
- W2894840947 hasRelatedWork W2974442408 @default.
- W2894840947 hasRelatedWork W2974692269 @default.
- W2894840947 hasRelatedWork W2998561741 @default.
- W2894840947 hasRelatedWork W3009005808 @default.
- W2894840947 hasRelatedWork W3025787173 @default.
- W2894840947 hasRelatedWork W3112033126 @default.
- W2894840947 hasRelatedWork W3122396520 @default.
- W2894840947 hasRelatedWork W3130955707 @default.
- W2894840947 hasRelatedWork W3174245262 @default.
- W2894840947 hasRelatedWork W3194033484 @default.
- W2894840947 hasRelatedWork W3206438671 @default.
- W2894840947 hasRelatedWork W3209764242 @default.
- W2894840947 isParatext "false" @default.
- W2894840947 isRetracted "false" @default.
- W2894840947 magId "2894840947" @default.
- W2894840947 workType "book-chapter" @default.