Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894861644> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2894861644 abstract "In this project, the data set generated from the data of the National Cancer Institute (NCI) derived from DICOMformatted lung cancer data has been converted to PNG format to make it suitable for the operation of image processing algorithms. The converted data is filtered by a second-order median filter to prevent noise. A laplacian filter was applied to clarify the boundaries of the candidate nodules. The threshold must be determined according to the histogram value of each view. To select a different threshold for each image was subjected to the determination threshold Otsu method. In Otsu threshold selection method determines the point at which the minimum-class variance and between-class variance is a maximum, and determines the threshold value. In the availability of candidate nodules, nodule diameter is intended for detection of the large nodules than 2 mm. To meet this requirement, the Otsu thresholding method was applied on the MATLAB platform to sieve nodules smaller than 2 mm in diameter and candidate nodules were detected. By determining the morphological characteristics of the identified candidate nodules in MATLAB platform, candidate nodule; Major features such as area, major axis length, minor axis length, and perimeters are extracted. The boundaries of the identified candidate nodules are bounded by the edge detection algorithm and numerically ordered." @default.
- W2894861644 created "2018-10-12" @default.
- W2894861644 creator A5027220798 @default.
- W2894861644 creator A5028915379 @default.
- W2894861644 creator A5039967450 @default.
- W2894861644 creator A5091311505 @default.
- W2894861644 date "2017-11-01" @default.
- W2894861644 modified "2023-09-24" @default.
- W2894861644 title "Detection of Candidate Nodules in Lung Tomography by Image Processing Techniques" @default.
- W2894861644 cites W2159558889 @default.
- W2894861644 doi "https://doi.org/10.1109/biyomut.2017.8478990" @default.
- W2894861644 hasPublicationYear "2017" @default.
- W2894861644 type Work @default.
- W2894861644 sameAs 2894861644 @default.
- W2894861644 citedByCount "0" @default.
- W2894861644 crossrefType "proceedings-article" @default.
- W2894861644 hasAuthorship W2894861644A5027220798 @default.
- W2894861644 hasAuthorship W2894861644A5028915379 @default.
- W2894861644 hasAuthorship W2894861644A5039967450 @default.
- W2894861644 hasAuthorship W2894861644A5091311505 @default.
- W2894861644 hasConcept C106131492 @default.
- W2894861644 hasConcept C111919701 @default.
- W2894861644 hasConcept C115961682 @default.
- W2894861644 hasConcept C153180895 @default.
- W2894861644 hasConcept C154945302 @default.
- W2894861644 hasConcept C191178318 @default.
- W2894861644 hasConcept C21729346 @default.
- W2894861644 hasConcept C2780365114 @default.
- W2894861644 hasConcept C31972630 @default.
- W2894861644 hasConcept C33923547 @default.
- W2894861644 hasConcept C41008148 @default.
- W2894861644 hasConcept C53533937 @default.
- W2894861644 hasConcept C9417928 @default.
- W2894861644 hasConcept C99498987 @default.
- W2894861644 hasConceptScore W2894861644C106131492 @default.
- W2894861644 hasConceptScore W2894861644C111919701 @default.
- W2894861644 hasConceptScore W2894861644C115961682 @default.
- W2894861644 hasConceptScore W2894861644C153180895 @default.
- W2894861644 hasConceptScore W2894861644C154945302 @default.
- W2894861644 hasConceptScore W2894861644C191178318 @default.
- W2894861644 hasConceptScore W2894861644C21729346 @default.
- W2894861644 hasConceptScore W2894861644C2780365114 @default.
- W2894861644 hasConceptScore W2894861644C31972630 @default.
- W2894861644 hasConceptScore W2894861644C33923547 @default.
- W2894861644 hasConceptScore W2894861644C41008148 @default.
- W2894861644 hasConceptScore W2894861644C53533937 @default.
- W2894861644 hasConceptScore W2894861644C9417928 @default.
- W2894861644 hasConceptScore W2894861644C99498987 @default.
- W2894861644 hasLocation W28948616441 @default.
- W2894861644 hasOpenAccess W2894861644 @default.
- W2894861644 hasPrimaryLocation W28948616441 @default.
- W2894861644 hasRelatedWork W1636693978 @default.
- W2894861644 hasRelatedWork W2034743729 @default.
- W2894861644 hasRelatedWork W2046379057 @default.
- W2894861644 hasRelatedWork W2048589595 @default.
- W2894861644 hasRelatedWork W2073048215 @default.
- W2894861644 hasRelatedWork W2093277593 @default.
- W2894861644 hasRelatedWork W2133064593 @default.
- W2894861644 hasRelatedWork W2512274894 @default.
- W2894861644 hasRelatedWork W2598191160 @default.
- W2894861644 hasRelatedWork W2795126330 @default.
- W2894861644 hasRelatedWork W2887048414 @default.
- W2894861644 hasRelatedWork W2891893035 @default.
- W2894861644 hasRelatedWork W2916965918 @default.
- W2894861644 hasRelatedWork W2936139739 @default.
- W2894861644 hasRelatedWork W2963649824 @default.
- W2894861644 hasRelatedWork W3168562368 @default.
- W2894861644 hasRelatedWork W2277816042 @default.
- W2894861644 hasRelatedWork W2402668295 @default.
- W2894861644 hasRelatedWork W2408284049 @default.
- W2894861644 hasRelatedWork W2958976115 @default.
- W2894861644 isParatext "false" @default.
- W2894861644 isRetracted "false" @default.
- W2894861644 magId "2894861644" @default.
- W2894861644 workType "article" @default.