Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894863837> ?p ?o ?g. }
- W2894863837 endingPage "377" @default.
- W2894863837 startingPage "361" @default.
- W2894863837 abstract "Given the costs of soil survey it is necessary to make the best use of available datasets, but data that differ with respect to some aspect of the sampling or analytical protocol cannot be combined simply. In this paper we consider a case where two datasets were available on the concentration of plant-available magnesium in the topsoil. The datasets were the Representative Soil Sampling Scheme (RSSS) and the National Soil Inventory (NSI) of England and Wales. The variable was measured over the same depth interval and with the same laboratory method, but the sample supports were different and so the datasets differ in their variance. We used a multivariate geostatistical model, the linear model of coregionalization (LMCR), to model the joint spatial distribution of the two datasets. The model allowed us to elucidate the effects of the sample support on the two datasets, and to show that there was a strong correlation between the underlying variables. The LMCR allowed us to make spatial predictions of the variable on the RSSS support by cokriging the RSSS data with the NSI data. We used cross-validation to test the validity of the LMCR and showed how incorporating the NSI data restricted the range of prediction error variances relative to univariate ordinary kriging predictions from the RSSS data alone. The standardized squared prediction errors were computed and the coverage of prediction intervals (i.e. the proportion of sites at which the prediction interval included the observed value of the variable). Both these statistics suggested that the prediction error variances were consistent for the cokriging predictions but not for the ordinary kriging predictions from the simple combination of the RSSS and NSI data, which might be proposed on the basis of their very similar mean values. The LMCR is therefore proposed as a general tool for the combined analysis of different datasets on soil properties.Differences in sample support mean that two datasets on a soil property cannot be combined simply.We showed how a multivariate geostatistical model can be used to elucidate the relationships between two such datasets.The same model allows soil properties to be mapped jointly from such data.This offers a general basis for combining soil datasets from diverse sources." @default.
- W2894863837 created "2018-10-12" @default.
- W2894863837 creator A5028634354 @default.
- W2894863837 creator A5057530419 @default.
- W2894863837 creator A5060301247 @default.
- W2894863837 date "2018-11-23" @default.
- W2894863837 modified "2023-09-25" @default.
- W2894863837 title "Combining two national‐scale datasets to map soil properties, the case of available magnesium in England and Wales" @default.
- W2894863837 cites W1767254696 @default.
- W2894863837 cites W1942641489 @default.
- W2894863837 cites W1978130952 @default.
- W2894863837 cites W1990601551 @default.
- W2894863837 cites W2006627800 @default.
- W2894863837 cites W2007811186 @default.
- W2894863837 cites W2025177977 @default.
- W2894863837 cites W2031158475 @default.
- W2894863837 cites W2046115020 @default.
- W2894863837 cites W2058585360 @default.
- W2894863837 cites W2090334438 @default.
- W2894863837 cites W2110207424 @default.
- W2894863837 cites W2122988492 @default.
- W2894863837 cites W2134681794 @default.
- W2894863837 cites W2139623627 @default.
- W2894863837 cites W2169833510 @default.
- W2894863837 cites W2170222751 @default.
- W2894863837 cites W2594640682 @default.
- W2894863837 cites W2738835267 @default.
- W2894863837 cites W4229561964 @default.
- W2894863837 cites W4229562638 @default.
- W2894863837 cites W4232329630 @default.
- W2894863837 doi "https://doi.org/10.1111/ejss.12743" @default.
- W2894863837 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6446813" @default.
- W2894863837 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30983873" @default.
- W2894863837 hasPublicationYear "2018" @default.
- W2894863837 type Work @default.
- W2894863837 sameAs 2894863837 @default.
- W2894863837 citedByCount "13" @default.
- W2894863837 countsByYear W28948638372019 @default.
- W2894863837 countsByYear W28948638372020 @default.
- W2894863837 countsByYear W28948638372021 @default.
- W2894863837 countsByYear W28948638372022 @default.
- W2894863837 countsByYear W28948638372023 @default.
- W2894863837 crossrefType "journal-article" @default.
- W2894863837 hasAuthorship W2894863837A5028634354 @default.
- W2894863837 hasAuthorship W2894863837A5057530419 @default.
- W2894863837 hasAuthorship W2894863837A5060301247 @default.
- W2894863837 hasBestOaLocation W28948638371 @default.
- W2894863837 hasConcept C105795698 @default.
- W2894863837 hasConcept C106131492 @default.
- W2894863837 hasConcept C121955636 @default.
- W2894863837 hasConcept C124101348 @default.
- W2894863837 hasConcept C125572338 @default.
- W2894863837 hasConcept C129848803 @default.
- W2894863837 hasConcept C134306372 @default.
- W2894863837 hasConcept C140779682 @default.
- W2894863837 hasConcept C144133560 @default.
- W2894863837 hasConcept C159390177 @default.
- W2894863837 hasConcept C159750122 @default.
- W2894863837 hasConcept C159985019 @default.
- W2894863837 hasConcept C161584116 @default.
- W2894863837 hasConcept C182365436 @default.
- W2894863837 hasConcept C185592680 @default.
- W2894863837 hasConcept C192562407 @default.
- W2894863837 hasConcept C196083921 @default.
- W2894863837 hasConcept C198531522 @default.
- W2894863837 hasConcept C199163554 @default.
- W2894863837 hasConcept C204323151 @default.
- W2894863837 hasConcept C20529654 @default.
- W2894863837 hasConcept C205649164 @default.
- W2894863837 hasConcept C2778755073 @default.
- W2894863837 hasConcept C31972630 @default.
- W2894863837 hasConcept C33923547 @default.
- W2894863837 hasConcept C39432304 @default.
- W2894863837 hasConcept C41008148 @default.
- W2894863837 hasConcept C43617362 @default.
- W2894863837 hasConcept C44249647 @default.
- W2894863837 hasConcept C58640448 @default.
- W2894863837 hasConcept C81692654 @default.
- W2894863837 hasConcept C94747663 @default.
- W2894863837 hasConceptScore W2894863837C105795698 @default.
- W2894863837 hasConceptScore W2894863837C106131492 @default.
- W2894863837 hasConceptScore W2894863837C121955636 @default.
- W2894863837 hasConceptScore W2894863837C124101348 @default.
- W2894863837 hasConceptScore W2894863837C125572338 @default.
- W2894863837 hasConceptScore W2894863837C129848803 @default.
- W2894863837 hasConceptScore W2894863837C134306372 @default.
- W2894863837 hasConceptScore W2894863837C140779682 @default.
- W2894863837 hasConceptScore W2894863837C144133560 @default.
- W2894863837 hasConceptScore W2894863837C159390177 @default.
- W2894863837 hasConceptScore W2894863837C159750122 @default.
- W2894863837 hasConceptScore W2894863837C159985019 @default.
- W2894863837 hasConceptScore W2894863837C161584116 @default.
- W2894863837 hasConceptScore W2894863837C182365436 @default.
- W2894863837 hasConceptScore W2894863837C185592680 @default.
- W2894863837 hasConceptScore W2894863837C192562407 @default.
- W2894863837 hasConceptScore W2894863837C196083921 @default.
- W2894863837 hasConceptScore W2894863837C198531522 @default.
- W2894863837 hasConceptScore W2894863837C199163554 @default.