Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894864410> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2894864410 abstract "Many researchers have been interested in studying Combinatorics on Words in theoretical andpractical points of view. Many families of words appeared during these years of research some ofthem are infinite and others are finite. In this thesis, we are interested in Christoffel words andwe introduce the Lyndon words and Standard sturmian words. We give numerous properties forthis type of words and we stress on the main one which is the order of balancedness. Well, itis known that Christoffel words are balanced words on two letters alphabet, where these wordsare exactly the discretization of line segments of rational slope. Christoffel words are consideredalso in the topic of synchronization of k process by a word on a k letter alphabet with a balanceproperty in each letter. For k = 2, we retrieve the usual Christoffel words. While for k > 2, thesituation is more complicated and lead to the Fraenkel’s conjecture that is an open conjecturefor more than 40 years. Since it is not easy to solve this conjecture, we were interested in findingsome tools that get us close to this conjecture. A balance matrix B w is introduced, where wis a Christoffel word, and the maximal value of this matrix is the order of balancedness of thebinary word. Since Christoffel words are one balanced then the maximal value obtained in thismatrix is equal to 1 and all the rows of this matrix is made of binary words. Testing again thebalancedness of these rows, a new matrix arises, called second order balance matrix. This matrixhas lot of characteristics and many symmetries and specially the way it is constructed since it ismade of 9 blocks where three of them belong to some particular Christoffel words appearing insome levels closer to the root of the Christoffel tree. The maximal value of this matrix is calledthe second order of balancedness for Christoffel words. From this matrix and this new orderof balancedness, we were able to show that the path followed by the fractions obtained fromthe ratio of the consecutive elements of Fibonacci sequence is a minimal path in the growth ofthis second order. In addition to that, these blocks are geometrically found on the Christoffelpath, by introducing a new factorization for the Christoffel words, called Symmetric standardfactorization. Similarly, we worked on finding a direct relation between the second order balancematrix U w and the initial Christoffel word without passing by the balance matrix B w but bystudying the set of factors of abelian vectors. All this work allow us to think about the initialtopic of research which is the synchronization of k balanced words. A complete study for the casek = 3 is given and we have discussed all the possible sub-cases for the synchronization by givingits seed, which is the starting column of the synchronized matrix. The second order balancematrix, with all its properties and decompositions form a good tool to study the synchronizationfor k generators that will be my future project of research. We have tried to use all the knowledgewe apply them on the reconstruction of digital convex polyominoes. Since the boundary wordof the digital convex polyominoe is made of Christoffel words with decreasing slopes. Hencewe introduce a split operator that respects the decreasing order of the slopes and therefore theconvexity is always conserved that is the first step toward the reconstruction." @default.
- W2894864410 created "2018-10-12" @default.
- W2894864410 creator A5033136511 @default.
- W2894864410 date "2017-11-24" @default.
- W2894864410 modified "2023-09-25" @default.
- W2894864410 title "Balance properties on Christoffel words and applications" @default.
- W2894864410 hasPublicationYear "2017" @default.
- W2894864410 type Work @default.
- W2894864410 sameAs 2894864410 @default.
- W2894864410 citedByCount "0" @default.
- W2894864410 crossrefType "dissertation" @default.
- W2894864410 hasAuthorship W2894864410A5033136511 @default.
- W2894864410 hasConcept C10138342 @default.
- W2894864410 hasConcept C105795698 @default.
- W2894864410 hasConcept C106487976 @default.
- W2894864410 hasConcept C114614502 @default.
- W2894864410 hasConcept C135598885 @default.
- W2894864410 hasConcept C136119220 @default.
- W2894864410 hasConcept C159985019 @default.
- W2894864410 hasConcept C162324750 @default.
- W2894864410 hasConcept C164804908 @default.
- W2894864410 hasConcept C182306322 @default.
- W2894864410 hasConcept C192562407 @default.
- W2894864410 hasConcept C202444582 @default.
- W2894864410 hasConcept C204160518 @default.
- W2894864410 hasConcept C2524010 @default.
- W2894864410 hasConcept C2776291640 @default.
- W2894864410 hasConcept C2780990831 @default.
- W2894864410 hasConcept C33923547 @default.
- W2894864410 hasConcept C41008148 @default.
- W2894864410 hasConcept C77088390 @default.
- W2894864410 hasConcept C77850982 @default.
- W2894864410 hasConcept C90805587 @default.
- W2894864410 hasConcept C94375191 @default.
- W2894864410 hasConceptScore W2894864410C10138342 @default.
- W2894864410 hasConceptScore W2894864410C105795698 @default.
- W2894864410 hasConceptScore W2894864410C106487976 @default.
- W2894864410 hasConceptScore W2894864410C114614502 @default.
- W2894864410 hasConceptScore W2894864410C135598885 @default.
- W2894864410 hasConceptScore W2894864410C136119220 @default.
- W2894864410 hasConceptScore W2894864410C159985019 @default.
- W2894864410 hasConceptScore W2894864410C162324750 @default.
- W2894864410 hasConceptScore W2894864410C164804908 @default.
- W2894864410 hasConceptScore W2894864410C182306322 @default.
- W2894864410 hasConceptScore W2894864410C192562407 @default.
- W2894864410 hasConceptScore W2894864410C202444582 @default.
- W2894864410 hasConceptScore W2894864410C204160518 @default.
- W2894864410 hasConceptScore W2894864410C2524010 @default.
- W2894864410 hasConceptScore W2894864410C2776291640 @default.
- W2894864410 hasConceptScore W2894864410C2780990831 @default.
- W2894864410 hasConceptScore W2894864410C33923547 @default.
- W2894864410 hasConceptScore W2894864410C41008148 @default.
- W2894864410 hasConceptScore W2894864410C77088390 @default.
- W2894864410 hasConceptScore W2894864410C77850982 @default.
- W2894864410 hasConceptScore W2894864410C90805587 @default.
- W2894864410 hasConceptScore W2894864410C94375191 @default.
- W2894864410 hasLocation W28948644101 @default.
- W2894864410 hasOpenAccess W2894864410 @default.
- W2894864410 hasPrimaryLocation W28948644101 @default.
- W2894864410 hasRelatedWork W1547429979 @default.
- W2894864410 hasRelatedWork W2004319476 @default.
- W2894864410 hasRelatedWork W2004595847 @default.
- W2894864410 hasRelatedWork W2021080573 @default.
- W2894864410 hasRelatedWork W2056235565 @default.
- W2894864410 hasRelatedWork W2068170894 @default.
- W2894864410 hasRelatedWork W2130075931 @default.
- W2894864410 hasRelatedWork W2182743239 @default.
- W2894864410 hasRelatedWork W2216859873 @default.
- W2894864410 hasRelatedWork W2250680610 @default.
- W2894864410 hasRelatedWork W2258884864 @default.
- W2894864410 hasRelatedWork W2400822038 @default.
- W2894864410 hasRelatedWork W2798800735 @default.
- W2894864410 hasRelatedWork W2951205465 @default.
- W2894864410 hasRelatedWork W2951994963 @default.
- W2894864410 hasRelatedWork W2963755413 @default.
- W2894864410 hasRelatedWork W2968376696 @default.
- W2894864410 hasRelatedWork W3012388601 @default.
- W2894864410 hasRelatedWork W3105161242 @default.
- W2894864410 hasRelatedWork W3118778470 @default.
- W2894864410 isParatext "false" @default.
- W2894864410 isRetracted "false" @default.
- W2894864410 magId "2894864410" @default.
- W2894864410 workType "dissertation" @default.