Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894869970> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2894869970 abstract "For $kge 2$ even, let $d_{k,N}$ denote the dimension of the largest simple Hecke submodule of $S_{k}(Gamma_0(N); mathbb{Q})^text{new}$. We show, using a simple analytic method, that $d_{k,N} gg_k loglog N / log(2p)$ with $p$ the smallest prime co-prime to $N$. Previously, bounds of this quality were only known for $N$ in certain subsets of the primes. We also establish similar (and sometimes stronger) results concerning $S_{k}(Gamma_0(N), chi)$, with $k geq 2$ an integer and $chi$ an arbitrary nebentypus." @default.
- W2894869970 created "2018-10-12" @default.
- W2894869970 creator A5019838837 @default.
- W2894869970 creator A5027276960 @default.
- W2894869970 creator A5063921334 @default.
- W2894869970 date "2018-10-03" @default.
- W2894869970 modified "2023-09-27" @default.
- W2894869970 title "A note on the dimension of the largest simple Hecke submodule" @default.
- W2894869970 hasPublicationYear "2018" @default.
- W2894869970 type Work @default.
- W2894869970 sameAs 2894869970 @default.
- W2894869970 citedByCount "0" @default.
- W2894869970 crossrefType "posted-content" @default.
- W2894869970 hasAuthorship W2894869970A5019838837 @default.
- W2894869970 hasAuthorship W2894869970A5027276960 @default.
- W2894869970 hasAuthorship W2894869970A5063921334 @default.
- W2894869970 hasConcept C111472728 @default.
- W2894869970 hasConcept C114614502 @default.
- W2894869970 hasConcept C138885662 @default.
- W2894869970 hasConcept C184992742 @default.
- W2894869970 hasConcept C199360897 @default.
- W2894869970 hasConcept C2780586882 @default.
- W2894869970 hasConcept C33676613 @default.
- W2894869970 hasConcept C33923547 @default.
- W2894869970 hasConcept C41008148 @default.
- W2894869970 hasConcept C97137487 @default.
- W2894869970 hasConceptScore W2894869970C111472728 @default.
- W2894869970 hasConceptScore W2894869970C114614502 @default.
- W2894869970 hasConceptScore W2894869970C138885662 @default.
- W2894869970 hasConceptScore W2894869970C184992742 @default.
- W2894869970 hasConceptScore W2894869970C199360897 @default.
- W2894869970 hasConceptScore W2894869970C2780586882 @default.
- W2894869970 hasConceptScore W2894869970C33676613 @default.
- W2894869970 hasConceptScore W2894869970C33923547 @default.
- W2894869970 hasConceptScore W2894869970C41008148 @default.
- W2894869970 hasConceptScore W2894869970C97137487 @default.
- W2894869970 hasLocation W28948699701 @default.
- W2894869970 hasOpenAccess W2894869970 @default.
- W2894869970 hasPrimaryLocation W28948699701 @default.
- W2894869970 hasRelatedWork W1511580298 @default.
- W2894869970 hasRelatedWork W1525226412 @default.
- W2894869970 hasRelatedWork W1538837824 @default.
- W2894869970 hasRelatedWork W1559932750 @default.
- W2894869970 hasRelatedWork W2049173163 @default.
- W2894869970 hasRelatedWork W2070756261 @default.
- W2894869970 hasRelatedWork W2092977611 @default.
- W2894869970 hasRelatedWork W2107990147 @default.
- W2894869970 hasRelatedWork W2112884357 @default.
- W2894869970 hasRelatedWork W2180760127 @default.
- W2894869970 hasRelatedWork W2894802868 @default.
- W2894869970 hasRelatedWork W2953308741 @default.
- W2894869970 hasRelatedWork W2962767533 @default.
- W2894869970 hasRelatedWork W2963354639 @default.
- W2894869970 hasRelatedWork W2963664346 @default.
- W2894869970 hasRelatedWork W3043035659 @default.
- W2894869970 hasRelatedWork W3119549973 @default.
- W2894869970 hasRelatedWork W3121124031 @default.
- W2894869970 hasRelatedWork W3121521379 @default.
- W2894869970 hasRelatedWork W893669676 @default.
- W2894869970 isParatext "false" @default.
- W2894869970 isRetracted "false" @default.
- W2894869970 magId "2894869970" @default.
- W2894869970 workType "article" @default.