Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894878871> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2894878871 abstract "Increase in the number of casualties visit to Emergency Department (ED) have lead to over crowd and delay in medical care. Hence, electronic triaging has been deployed to alleviate these problems and improve managing the patient. In this paper research methodology framework based on diagnostic and cross-sectional study is used for patient triage. The empirical approach is used to build models for patient triage to correctly predict the patient’s medical condition, given their signs and symptoms. Models are built with supervised learning algorithms. The “Naive Bayes”, “Support Vector Machine”, “Decision Tree” and, “Neural Network” classification models are implemented and evaluated using chi-square statistical test. This study infers the significance of using machine learning algorithms to predict patient’s medical condition. Support Vector Machine and Decision Tree have shown better performance for the considered dataset." @default.
- W2894878871 created "2018-10-12" @default.
- W2894878871 creator A5028076059 @default.
- W2894878871 creator A5036969020 @default.
- W2894878871 creator A5080539929 @default.
- W2894878871 date "2018-01-01" @default.
- W2894878871 modified "2023-09-25" @default.
- W2894878871 title "Machine Learning Based Electronic Triage for Emergency Department" @default.
- W2894878871 cites W2008094008 @default.
- W2894878871 cites W2031075562 @default.
- W2894878871 cites W2160079395 @default.
- W2894878871 cites W2346958291 @default.
- W2894878871 cites W2608704106 @default.
- W2894878871 doi "https://doi.org/10.1007/978-981-13-2907-4_19" @default.
- W2894878871 hasPublicationYear "2018" @default.
- W2894878871 type Work @default.
- W2894878871 sameAs 2894878871 @default.
- W2894878871 citedByCount "3" @default.
- W2894878871 countsByYear W28948788712020 @default.
- W2894878871 crossrefType "book-chapter" @default.
- W2894878871 hasAuthorship W2894878871A5028076059 @default.
- W2894878871 hasAuthorship W2894878871A5036969020 @default.
- W2894878871 hasAuthorship W2894878871A5080539929 @default.
- W2894878871 hasConcept C111472728 @default.
- W2894878871 hasConcept C118552586 @default.
- W2894878871 hasConcept C119857082 @default.
- W2894878871 hasConcept C120936955 @default.
- W2894878871 hasConcept C12267149 @default.
- W2894878871 hasConcept C138885662 @default.
- W2894878871 hasConcept C154945302 @default.
- W2894878871 hasConcept C2777120189 @default.
- W2894878871 hasConcept C2780724011 @default.
- W2894878871 hasConcept C41008148 @default.
- W2894878871 hasConcept C50644808 @default.
- W2894878871 hasConcept C52001869 @default.
- W2894878871 hasConcept C545542383 @default.
- W2894878871 hasConcept C71924100 @default.
- W2894878871 hasConcept C84525736 @default.
- W2894878871 hasConceptScore W2894878871C111472728 @default.
- W2894878871 hasConceptScore W2894878871C118552586 @default.
- W2894878871 hasConceptScore W2894878871C119857082 @default.
- W2894878871 hasConceptScore W2894878871C120936955 @default.
- W2894878871 hasConceptScore W2894878871C12267149 @default.
- W2894878871 hasConceptScore W2894878871C138885662 @default.
- W2894878871 hasConceptScore W2894878871C154945302 @default.
- W2894878871 hasConceptScore W2894878871C2777120189 @default.
- W2894878871 hasConceptScore W2894878871C2780724011 @default.
- W2894878871 hasConceptScore W2894878871C41008148 @default.
- W2894878871 hasConceptScore W2894878871C50644808 @default.
- W2894878871 hasConceptScore W2894878871C52001869 @default.
- W2894878871 hasConceptScore W2894878871C545542383 @default.
- W2894878871 hasConceptScore W2894878871C71924100 @default.
- W2894878871 hasConceptScore W2894878871C84525736 @default.
- W2894878871 hasLocation W28948788711 @default.
- W2894878871 hasOpenAccess W2894878871 @default.
- W2894878871 hasPrimaryLocation W28948788711 @default.
- W2894878871 hasRelatedWork W139607693 @default.
- W2894878871 hasRelatedWork W140148281 @default.
- W2894878871 hasRelatedWork W1591426973 @default.
- W2894878871 hasRelatedWork W1977487555 @default.
- W2894878871 hasRelatedWork W2078090701 @default.
- W2894878871 hasRelatedWork W2133185637 @default.
- W2894878871 hasRelatedWork W2151657815 @default.
- W2894878871 hasRelatedWork W2169585345 @default.
- W2894878871 hasRelatedWork W2404114287 @default.
- W2894878871 hasRelatedWork W2789639487 @default.
- W2894878871 hasRelatedWork W2790660115 @default.
- W2894878871 hasRelatedWork W2954386942 @default.
- W2894878871 hasRelatedWork W3032833300 @default.
- W2894878871 hasRelatedWork W3159759549 @default.
- W2894878871 hasRelatedWork W3161464765 @default.
- W2894878871 hasRelatedWork W3164559617 @default.
- W2894878871 hasRelatedWork W3169805205 @default.
- W2894878871 hasRelatedWork W3196928193 @default.
- W2894878871 hasRelatedWork W44177890 @default.
- W2894878871 hasRelatedWork W3018060578 @default.
- W2894878871 isParatext "false" @default.
- W2894878871 isRetracted "false" @default.
- W2894878871 magId "2894878871" @default.
- W2894878871 workType "book-chapter" @default.