Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894883309> ?p ?o ?g. }
- W2894883309 endingPage "2610" @default.
- W2894883309 startingPage "2603" @default.
- W2894883309 abstract "ConspectusThe increasing supply of natural gas has created a strong demand for developing efficient catalytic processes to upgrade methane, the most stable alkane molecule, into value-added chemicals. Currently, methane conversion in laboratory and industry is mostly performed under high-temperature conditions. A lot of effort has been devoted to exploring chemical entities that are able to activate the C–H bond of methane at lower temperatures, preferably room temperature.Gas phase atomic clusters with limited numbers of atoms are ideal models of active sites on heterogeneous catalysts. The cluster systems are being actively studied to activate methane under room-temperature conditions. State-of-the-art mass spectrometry, photoelectron imaging spectroscopy, and quantum chemistry calculations have been combined in our laboratory to reveal the molecular-level mechanisms of methane activation by atomic clusters. In this Account, we summarize our recent progress on thermal methane activation by metal oxide clusters doped with noble-metal atoms (Au, Pt, and Rh) as well as by oxygen-free species including carbides and borides of base metals (V, Ta, Mo, and Fe). In contrast to the generations of CH3• free radicals in many of the previously reported cluster reactions with methane, the generations of stable products such as formaldehyde, acetylene, and syngas as well as closed-shell species AuCH3 and B3CH3 have been identified for the cluster reaction systems herein. Besides the well recognized mechanisms of methane activation by the O–• radicals through hydrogen atom abstraction and by metal atoms through oxidative addition, the new mechanisms of synergistic methane activation by Lewis acid–base pairs (such as Auδ+–Oδ− and Bδ+–Bδ−) and by dinuclear metal centers (such as Ta–Ta) have been recently revealed.In the reactions between methane and oxide clusters doped with noble-metal atoms, the oxide cluster “supports” can accept the H atoms and the CHx species delivered through the noble-metal atoms and then transform methane into stable oxygenated compounds. The product selectivity (such as formaldehyde versus syngas) can be controlled by different noble-metal atoms (such as Pt versus Rh). The electronic structures of base metal centers can be engineered through carburization so that the low-spin states can be accessible to reduce the C–H bond of methane. Such active base metal centers in low-spin states resemble related noble-metal atoms in methane activation. The boron clusters (such as B3 in VB3+) can be polarized by the metal cations to form the Lewis acid–base pair Bδ+–Bδ− to cleave the C–H bond of methane very easily. These molecular-level mechanisms may well be operative in related heterogeneous catalysis and can be a fundamental basis to design efficient catalysts for activation and conversion of methane under mild conditions." @default.
- W2894883309 created "2018-10-12" @default.
- W2894883309 creator A5003132203 @default.
- W2894883309 creator A5023754207 @default.
- W2894883309 creator A5054795710 @default.
- W2894883309 creator A5075640750 @default.
- W2894883309 date "2018-10-05" @default.
- W2894883309 modified "2023-10-15" @default.
- W2894883309 title "Methane Activation by Gas Phase Atomic Clusters" @default.
- W2894883309 cites W1611750409 @default.
- W2894883309 cites W1835984247 @default.
- W2894883309 cites W1965143568 @default.
- W2894883309 cites W1979371521 @default.
- W2894883309 cites W1981237763 @default.
- W2894883309 cites W1987788488 @default.
- W2894883309 cites W1988287022 @default.
- W2894883309 cites W1990815298 @default.
- W2894883309 cites W1990891689 @default.
- W2894883309 cites W1994438528 @default.
- W2894883309 cites W1996605539 @default.
- W2894883309 cites W1999453802 @default.
- W2894883309 cites W2001956341 @default.
- W2894883309 cites W2014576173 @default.
- W2894883309 cites W2018088076 @default.
- W2894883309 cites W2022337404 @default.
- W2894883309 cites W2024037540 @default.
- W2894883309 cites W2024972662 @default.
- W2894883309 cites W2028560031 @default.
- W2894883309 cites W2059003142 @default.
- W2894883309 cites W2064517416 @default.
- W2894883309 cites W2065215936 @default.
- W2894883309 cites W2073223935 @default.
- W2894883309 cites W2073753357 @default.
- W2894883309 cites W2077996193 @default.
- W2894883309 cites W2081253936 @default.
- W2894883309 cites W2091608856 @default.
- W2894883309 cites W2099730227 @default.
- W2894883309 cites W2103191961 @default.
- W2894883309 cites W2123265733 @default.
- W2894883309 cites W2128738505 @default.
- W2894883309 cites W2147565437 @default.
- W2894883309 cites W2156257115 @default.
- W2894883309 cites W2162441730 @default.
- W2894883309 cites W2165953425 @default.
- W2894883309 cites W2166005846 @default.
- W2894883309 cites W2322807361 @default.
- W2894883309 cites W2327719941 @default.
- W2894883309 cites W2330405805 @default.
- W2894883309 cites W2330573181 @default.
- W2894883309 cites W2409245177 @default.
- W2894883309 cites W2426430306 @default.
- W2894883309 cites W2430947258 @default.
- W2894883309 cites W2460700417 @default.
- W2894883309 cites W2511272774 @default.
- W2894883309 cites W2522145708 @default.
- W2894883309 cites W2557838702 @default.
- W2894883309 cites W2559821241 @default.
- W2894883309 cites W2570408230 @default.
- W2894883309 cites W2576808996 @default.
- W2894883309 cites W2583267334 @default.
- W2894883309 cites W2585646429 @default.
- W2894883309 cites W2611158094 @default.
- W2894883309 cites W2611302578 @default.
- W2894883309 cites W2745627349 @default.
- W2894883309 cites W2765672910 @default.
- W2894883309 cites W2767601659 @default.
- W2894883309 cites W2768058342 @default.
- W2894883309 cites W2783002498 @default.
- W2894883309 cites W2794145969 @default.
- W2894883309 cites W2794430282 @default.
- W2894883309 cites W2797181899 @default.
- W2894883309 cites W2883815639 @default.
- W2894883309 cites W2953104855 @default.
- W2894883309 cites W4253433717 @default.
- W2894883309 doi "https://doi.org/10.1021/acs.accounts.8b00403" @default.
- W2894883309 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30289247" @default.
- W2894883309 hasPublicationYear "2018" @default.
- W2894883309 type Work @default.
- W2894883309 sameAs 2894883309 @default.
- W2894883309 citedByCount "91" @default.
- W2894883309 countsByYear W28948833092018 @default.
- W2894883309 countsByYear W28948833092019 @default.
- W2894883309 countsByYear W28948833092020 @default.
- W2894883309 countsByYear W28948833092021 @default.
- W2894883309 countsByYear W28948833092022 @default.
- W2894883309 countsByYear W28948833092023 @default.
- W2894883309 crossrefType "journal-article" @default.
- W2894883309 hasAuthorship W2894883309A5003132203 @default.
- W2894883309 hasAuthorship W2894883309A5023754207 @default.
- W2894883309 hasAuthorship W2894883309A5054795710 @default.
- W2894883309 hasAuthorship W2894883309A5075640750 @default.
- W2894883309 hasConcept C161790260 @default.
- W2894883309 hasConcept C164866538 @default.
- W2894883309 hasConcept C178790620 @default.
- W2894883309 hasConcept C179104552 @default.
- W2894883309 hasConcept C185592680 @default.
- W2894883309 hasConcept C199360897 @default.
- W2894883309 hasConcept C2777517455 @default.