Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894890204> ?p ?o ?g. }
- W2894890204 endingPage "13" @default.
- W2894890204 startingPage "1" @default.
- W2894890204 abstract "Blood pressure (BP) has been a potential risk factor for cardiovascular diseases. BP measurement is one of the most useful parameters for early diagnosis, prevention, and treatment of cardiovascular diseases. At present, BP measurement mainly relies on cuff-based techniques that cause inconvenience and discomfort to users. Although some of the present prototype cuffless BP measurement techniques are able to reach overall acceptable accuracies, they require an electrocardiogram (ECG) and a photoplethysmograph (PPG) that make them unsuitable for true wearable applications. Therefore, developing a single PPG-based cuffless BP estimation algorithm with enough accuracy would be clinically and practically useful.The University of Queensland vital sign dataset (online database) was accessed to extract raw PPG signals and its corresponding reference BPs (systolic BP and diastolic BP). The online database consisted of PPG waveforms of 32 cases from whom 8133 (good quality) signal segments (5 s for each) were extracted, preprocessed, and normalised in both width and amplitude. Three most significant pulse features (pulse area, pulse rising time, and width 25%) with their corresponding reference BPs were used to train and test three machine learning algorithms (regression tree, multiple linear regression (MLR), and support vector machine (SVM)). A 10-fold cross-validation was applied to obtain overall BP estimation accuracy, separately for the three machine learning algorithms. Their estimation accuracies were further analysed separately for three clinical BP categories (normotensive, hypertensive, and hypotensive). Finally, they were compared with the ISO standard for noninvasive BP device validation (average difference no greater than 5 mmHg and SD no greater than 8 mmHg).In terms of overall estimation accuracy, the regression tree achieved the best overall accuracy for SBP (mean and SD of difference: -0.1 ± 6.5 mmHg) and DBP (mean and SD of difference: -0.6 ± 5.2 mmHg). MLR and SVM achieved the overall mean difference less than 5 mmHg for both SBP and DBP, but their SD of difference was >8 mmHg. Regarding the estimation accuracy in each BP categories, only the regression tree achieved acceptable ISO standard for SBP (-1.1 ± 5.7 mmHg) and DBP (-0.03 ± 5.6 mmHg) in the normotensive category. MLR and SVM did not achieve acceptable accuracies in any BP categories.This study developed and compared three machine learning algorithms to estimate BPs using PPG only and revealed that the regression tree algorithm was the best approach with overall acceptable accuracy to ISO standard for BP device validation. Furthermore, this study demonstrated that the regression tree algorithm achieved acceptable measurement accuracy only in the normotensive category, suggesting that future algorithm development for BP estimation should be more specific for different BP categories." @default.
- W2894890204 created "2018-10-12" @default.
- W2894890204 creator A5000576706 @default.
- W2894890204 creator A5054709496 @default.
- W2894890204 creator A5057237082 @default.
- W2894890204 creator A5091084430 @default.
- W2894890204 date "2018-10-23" @default.
- W2894890204 modified "2023-10-14" @default.
- W2894890204 title "Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches" @default.
- W2894890204 cites W1984106284 @default.
- W2894890204 cites W1987077480 @default.
- W2894890204 cites W1991170684 @default.
- W2894890204 cites W2009647758 @default.
- W2894890204 cites W2019606383 @default.
- W2894890204 cites W2021674224 @default.
- W2894890204 cites W2026903683 @default.
- W2894890204 cites W2064455475 @default.
- W2894890204 cites W2080621654 @default.
- W2894890204 cites W2096993177 @default.
- W2894890204 cites W2101342650 @default.
- W2894890204 cites W2104995777 @default.
- W2894890204 cites W2105704369 @default.
- W2894890204 cites W2111256021 @default.
- W2894890204 cites W2123321258 @default.
- W2894890204 cites W2131288011 @default.
- W2894890204 cites W2141057577 @default.
- W2894890204 cites W2150823344 @default.
- W2894890204 cites W2294078353 @default.
- W2894890204 cites W2332411645 @default.
- W2894890204 cites W2410822849 @default.
- W2894890204 cites W2431637923 @default.
- W2894890204 cites W2505411293 @default.
- W2894890204 cites W2576387397 @default.
- W2894890204 cites W2607808876 @default.
- W2894890204 cites W2608498389 @default.
- W2894890204 cites W2755894455 @default.
- W2894890204 cites W2756460743 @default.
- W2894890204 cites W2781086988 @default.
- W2894890204 cites W2783498497 @default.
- W2894890204 cites W2804496683 @default.
- W2894890204 doi "https://doi.org/10.1155/2018/1548647" @default.
- W2894890204 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6218731" @default.
- W2894890204 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30425819" @default.
- W2894890204 hasPublicationYear "2018" @default.
- W2894890204 type Work @default.
- W2894890204 sameAs 2894890204 @default.
- W2894890204 citedByCount "111" @default.
- W2894890204 countsByYear W28948902042019 @default.
- W2894890204 countsByYear W28948902042020 @default.
- W2894890204 countsByYear W28948902042021 @default.
- W2894890204 countsByYear W28948902042022 @default.
- W2894890204 countsByYear W28948902042023 @default.
- W2894890204 crossrefType "journal-article" @default.
- W2894890204 hasAuthorship W2894890204A5000576706 @default.
- W2894890204 hasAuthorship W2894890204A5054709496 @default.
- W2894890204 hasAuthorship W2894890204A5057237082 @default.
- W2894890204 hasAuthorship W2894890204A5091084430 @default.
- W2894890204 hasBestOaLocation W28948902041 @default.
- W2894890204 hasConcept C106131492 @default.
- W2894890204 hasConcept C116390426 @default.
- W2894890204 hasConcept C119857082 @default.
- W2894890204 hasConcept C12267149 @default.
- W2894890204 hasConcept C126322002 @default.
- W2894890204 hasConcept C153180895 @default.
- W2894890204 hasConcept C154945302 @default.
- W2894890204 hasConcept C31972630 @default.
- W2894890204 hasConcept C41008148 @default.
- W2894890204 hasConcept C48921125 @default.
- W2894890204 hasConcept C71924100 @default.
- W2894890204 hasConcept C84393581 @default.
- W2894890204 hasConceptScore W2894890204C106131492 @default.
- W2894890204 hasConceptScore W2894890204C116390426 @default.
- W2894890204 hasConceptScore W2894890204C119857082 @default.
- W2894890204 hasConceptScore W2894890204C12267149 @default.
- W2894890204 hasConceptScore W2894890204C126322002 @default.
- W2894890204 hasConceptScore W2894890204C153180895 @default.
- W2894890204 hasConceptScore W2894890204C154945302 @default.
- W2894890204 hasConceptScore W2894890204C31972630 @default.
- W2894890204 hasConceptScore W2894890204C41008148 @default.
- W2894890204 hasConceptScore W2894890204C48921125 @default.
- W2894890204 hasConceptScore W2894890204C71924100 @default.
- W2894890204 hasConceptScore W2894890204C84393581 @default.
- W2894890204 hasFunder F4320311962 @default.
- W2894890204 hasLocation W28948902041 @default.
- W2894890204 hasLocation W28948902042 @default.
- W2894890204 hasLocation W28948902043 @default.
- W2894890204 hasLocation W28948902044 @default.
- W2894890204 hasLocation W28948902045 @default.
- W2894890204 hasLocation W28948902046 @default.
- W2894890204 hasOpenAccess W2894890204 @default.
- W2894890204 hasPrimaryLocation W28948902041 @default.
- W2894890204 hasRelatedWork W2041399278 @default.
- W2894890204 hasRelatedWork W2056016498 @default.
- W2894890204 hasRelatedWork W2136184105 @default.
- W2894890204 hasRelatedWork W2160451891 @default.
- W2894890204 hasRelatedWork W2336974148 @default.
- W2894890204 hasRelatedWork W2389470892 @default.
- W2894890204 hasRelatedWork W3013515612 @default.